1
|
Zhu R, Wang Z, Liang A, Wen G, Jiang Z. A facile and selective resonance Rayleigh scattering method for trace nitrite using gold nanocluster surface molecularly imprinted polyisopropylacrylamide probe. Anal Bioanal Chem 2025; 417:297-310. [PMID: 39520545 DOI: 10.1007/s00216-024-05644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A novel gold nanocluster surface molecularly imprinted polyisopropylacrylamide probe (AuNC@MIP) was synthesized for the specific detection of NO2-, using N-isopropylacrylamide (NIPAM) as the functional monomer, gold nanoclusters (AuNC) as the substrate, ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, and nitrosophenol (NPN) produced from sodium nitrite (NaNO2) and phenol (PN) as the template molecule, N,N-dimethylformamide (DMF) as the solvent, and azobisisobutyronitrile (AIBN) as the initiator. The nanoprobe was characterized using molecular spectroscopy, XPS, TEM, TGA, and zeta potential analysis. The probes revealed a prominent resonance Rayleigh scattering (RRS) peak at 370 nm. Upon addition of NO2-, the RRS intensity at 370 nm decreased due to the RRS energy transfer enhancing. The linear determination range is 0.125-1.50 nmol/L NO2-, with a limit of detection (LOD) of 0.085 nmol/L. The new RRS method was applied to determine NO2- in meat, dairy products, and water samples, with recovery of 96-107% also relative standard deviations (RSDs) of 1.1-8.0%.
Collapse
Affiliation(s)
- Ruitao Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, China
| | - Zhiqiang Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, China.
| |
Collapse
|
2
|
Hu Y, Shen L, Zhang Y, Lu L, Fu H, She Y. A naphthalimide-based fluorescent probe for rapid detection of nitrite and its application in food quality monitoring. Anal Chim Acta 2023; 1268:341403. [PMID: 37268343 DOI: 10.1016/j.aca.2023.341403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Nitrite (NO2-) is a widely used food additive and long-term aging of cooked leftovers may also contribute to the formation of NO2-, excessive consumption of NO2- is harmful to human health. Developing an effective sensing strategy for on-site monitoring of NO2- has attracted considerable attention. Herein, a novel colorimetric and fluorometric probe ND-1 based on photoinduced electron transfer effect (PET) was designed for highly selective and sensitive detection of nitrite (NO2-) in foods. The probe ND-1 was strategically constructed by employing naphthalimide as the fluorophore and o-phenylendiamine as the specific recognition site for NO2-. The triazole derivative ND-1-NO2- could be produced exclusively by reacting with NO2-, leading to a visible colorimetric change from yellow to colorless accompanied by a significantly enhanced fluorescence intensity at 440 nm. The probe ND-1 exhibited promising sensing performances towards NO2- including high selectivity, rapid response time (within 7 min), low detection limit (47.15 nM) and wide quantitative detection range (0-35 μM). In addition, probe ND-1 was capable of quantitative detecting of NO2- in real food samples (including pickled vegetables and cured meat products) with satisfactory recovery rates (97.61%-103.08%). Moreover, the paper device loaded by probe ND-1 could be utilized for visual monitoring of NO2- levels variation of stir-fried greens. This study provided a feasible method for the accurate, traceable and rapid on-site monitoring NO2- in foods.
Collapse
Affiliation(s)
- Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Lu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yinan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Lingmin Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
3
|
Tang T, Zhang M, Lim Law C, Mujumdar AS. Novel strategies for controlling nitrite content in prepared dishes: Current status, potential benefits, limitations and future challenges. Food Res Int 2023; 170:112984. [PMID: 37316019 DOI: 10.1016/j.foodres.2023.112984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Sodium nitrite is commonly used as a multifunctional curing ingredient in the processing of prepared dishes, especially meat products, to impart unique color, flavor and to prolong the shelf life of such products. However, the use of sodium nitrite in the meat industry has been controversial due to potential health risks. Finding suitable substitutes for sodium nitrite and controlling nitrite residue have been a major challenge faced by the meat processing industry. This paper summarizes possible factors affecting the variation of nitrite content in the processing of prepared dishes. New strategies for controlling nitrite residues in meat dishes, including natural pre-converted nitrite, plant extracts, irradiation, non-thermal plasma and high hydrostatic pressure (HHP), are discussed in detail. The advantages and limitations of these strategies are also summarized. Raw materials, cooking techniques, packaging methods, and storage conditions all affect the content of nitrite in the prepared dishes. The use of vegetable pre-conversion nitrite and the addition of plant extracts can help reduce nitrite residues in meat products and meet the consumer demand for clean labeled meat products. Atmospheric pressure plasma, as a non-thermal pasteurization and curing process, is a promising meat processing technology. HHP has good bactericidal effect and is suitable for hurdle technology to limit the amount of sodium nitrite added. This review is intended to provide insights for the control of nitrite in the modern production of prepared dishes.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Malaysia Campus, University of Nottingham, Semenyih 43500, Selangor, Malaysia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
4
|
Yang C, Xu G, Hou C, Peng L, Wang W, Zhang H, Zhang X. A dual-mode nanoprobe based on silicon nanoparticles and Fe(II)-phenanthroline for the colorimetric and fluorescence determination of nitrite. Mikrochim Acta 2023; 190:318. [PMID: 37490216 DOI: 10.1007/s00604-023-05911-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
A fluorometric and colorimetric dual-modal nanoprobe (denoted as Fe2+-Phen/SiNPs) has been developed for selective and sensitive determination of nitrite (NO2-). The mechanism is based on fluorescence quenching between silicon nanoparticles (SiNPs) and Fe(II)-phenanthroline complex (Fe2+-Phen) via inner filter effect and redox. With the addition of increasing NO2-, Fe2+ is oxidized to Fe3+, recovering the fluorescence of SiNPs. Meanwhile, the color of the system gradually changes from orange-red to colorless, which enables colorimetric measurement. The NO2- concentration shows a wide linear relationship with fluorescence intensity from 0.1 to 1.0 mM (R2 = 0.9955) with a detection limit of 2.4 μM in the fluorometric method (excitation wavelength: 380 nm). By contrast, the linear range of the colorimetric method ranges from 0.01 to 0.35 mM (R2 = 0.9953) with a limit of detection of 6.8 μM (proposed selective absorbance: 510 nm). The probe has been successfully applied to nitrite determination in water, salted vegetables, and hams demonstrating broad application prospects for the determination of nitrite in complicated matrices.
Collapse
Affiliation(s)
- Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
| | - Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Chenghao Hou
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Lizeng Peng
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
5
|
Wang M, Yu Y, Ren Y, Wang J, Chen H. Effect of antibiotic and/or heavy metal on nitrogen cycle of sediment-water interface in aquaculture system: Implications from sea cucumber culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121453. [PMID: 36934965 DOI: 10.1016/j.envpol.2023.121453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics and heavy metals can have a negative impact on the nitrogen (N) cycle and microbial metabolism in coastal aquaculture environment. An indoor simulated culture experiment was conducted to explore how sulfadiazine and lead influence the N cycling in aquatic environment. Specifically, the experiment involved adding sulfadiazine (SDZ), lead (Pb), a combination of SDZ and Pb (SP), and a control group (CK). The fluxes and contents of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) in sediment-water interface and sediments, the abundance of N cycle function genes (amoA_AOB, hzsA, nar, nirK, nirS, norB and nosZ) and microbiota in sediments were analyzed. The results showed that the presence of SDZ and Pb inhibited the nitrification function gene and nitrifiers abundance in surface sediment, and thus leading to more accumulation of NH4+ and NO2- in overlying water. Pb exposure increased the abundances of denitrifying bacteria stimulated the first three steps of denitrification in the sediment, resulting in more removal of NO3- from the sediment, but possibly had the risk of releasing more greenhouse gas N2O. Conversely, the presence of SDZ ultimately inhibited denitrification and anammox bacterial activities in the sediment. This study revealed how heavy metal and antibiotic impair the microbial communities and N cycling function gene expression, leading to the deterioration of typical coastal aquaculture environments.
Collapse
Affiliation(s)
- Mengshu Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Yu Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China.
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Hui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| |
Collapse
|
6
|
Feng L, Zou M, Lv X, Min X, Lin X, Ni Y. Facile synthesis of ZIF-67C@RGO/NiNPs nanocomposite for electrochemical non-enzymatic sensing platform of nitrite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wang P, Zhang Y, Liu Y, Pang X, Liu P, Dong WF, Mei Q, Qian Q, Li L, Yan R. Starch-Based Carbon Dots for Nitrite and Sulfite Detection. Front Chem 2021; 9:782238. [PMID: 34805100 PMCID: PMC8602874 DOI: 10.3389/fchem.2021.782238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Nitrite and sulfite play important roles in human health and environmental science, so it is desired to develop a facile and efficient method to evaluate NO2 - and SO3 2- concentrations. In this article, the use of green alternatives with the potential of multi-functionality has been synthesized to detect nitrite and sulfite based on fluorescent probe. The carbon dots (CDs) with starch as only raw materials show fluorescence turn "on-off-on" response towards NO2 - and SO3 2- with the limits of detection of 0.425 and 0.243 μМ, respectively. Once nitrite was present in the solution, the fluorescence of CDs was quenched rapidly due to the charge transfer. When sulfite was introduced, the quenching fluorescence of CDs was effectively recovered because of the redox reaction between NO2 - and SO3 2-, and thus providing a new way for NO2 - and SO3 2- detection. Owing to their excellent analytical characteristics and low cytotoxicity, the "on-off-on" sensor was successfully employed for intracellular bioimaging of NO2 - and SO3 2-.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Zhang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Xinpei Pang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Pai Liu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, China
| | - Qing Qian
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Ruhong Yan
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Morsy MK, Morsy OM, Abd-Elaaty EM, Elsabagh R. Development and Validation of Rapid Colorimetric Detection of Nitrite Concentration in Meat Products on a Polydimethylsiloxane (PDMS) Microfluidic Device. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Chen H, Tang W, Liu Y, Wang L. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF 4:Yb,Tm@NaYF 4 upconversion nanoparticles composite luminescent probe. Food Chem 2021; 367:130660. [PMID: 34390907 DOI: 10.1016/j.foodchem.2021.130660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/12/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
In this work, a quantitative image analysis method based on cyanine dye-upconversion nanoparticles composite luminescent nanoprobe for the detection of nitrite was developed. The nanoprobe was constructed by combining the NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) and the new cyanine dye IR-790. The upconversion nanoparticles transferred energy to IR-790, resulting in the luminescence quenching, while the luminescence of UCNPs was recovered after adding NO2-. The increase in photons was related to the concentration of NO2-. Under the optimal experimental conditions, the detection range was 0.20-140 μM and the limit of detection was 0.030 μM. The measurement for NO2- can be completed in 29 min. The method has the characteristics of fast response (~0.1 s), low sample consumption (10 μL) and powerful data support (550 frame time series images). Furthermore, the quantitative image analysis method was successfully applied for the analysis of nitrite in environmental water and food samples.
Collapse
Affiliation(s)
- Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Wei Tang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yunchun Liu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
10
|
Tomsia M, Głaz M, Nowicka J, Szczepański M. Sodium nitrite detection in costal cartilage and vitreous humor - Case report of fatal poisoning with sodium nitrite. J Forensic Leg Med 2021; 81:102186. [PMID: 34058704 DOI: 10.1016/j.jflm.2021.102186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Medico-legal case reports very rarely describe sodium nitrite poisonings, but when they do most often they describe fatal suicide attempts. The case report presents a suicidal attempt with sodium nitrite of unknown provenance and the first attempt to detect nitrite ions in costal cartilage and vitreous humor samples. In February 2020, the corpse of a 23-year-old man was revealed in a student apartment. According to the prosecutor's office, the deceased had an incomplete IT (Information Technology) degree. The onsite inspection revealed the body on the bathroom floor, an opened container with sodium nitrite III in the bathroom cabinet, and a farewell letter in the apartment. The autopsy showed the hypoxia symptoms. The blood and urine of the deceased showed no trace of ethyl alcohol or psychoactive substances. Analyses showed the presence of nitrite ions in the blood (0.2 μg/ml) and urine (24.6 μg/ml) of the deceased. Additional analyses revealed nitrites presence in the gastric contents (2200 μg/ml), liver tissue (0.3 μg/g), kidney tissue (3.6 μg/g) and, for the first time, in costal cartilage (3.4 μg/g) and vitreous humor (57.7 μg/ml). The autopsy concluded that the cause of death was an acute cardio-respiratory failure in the course of suicidal sodium nitrite poisoning. The presented case indicates the need for collecting a wide range of samples for toxicological analyses. It also proves that both costal cartilage and vitreous humor may serve as an alternative forensic material in sodium nitrite poisonings.
Collapse
Affiliation(s)
- Marcin Tomsia
- Medical University of Silesia, Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| | - Małgorzata Głaz
- Medical University of Silesia, Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Joanna Nowicka
- Medical University of Silesia, Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Michał Szczepański
- Medical University of Silesia, Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| |
Collapse
|
11
|
Mesoporous CoOx/C Nanocomposites Functionalized Electrochemical Sensor for Rapid and Continuous Detection of Nitrite. COATINGS 2021. [DOI: 10.3390/coatings11050596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitrite is widespread in the environment, and is frequently used as an additive to extend the shelf life of meat products. However, the excess intake of nitrite can be harmful to human health. Hence, it is very important to know and control the content of nitrite in foodstuffs. In this work, by the means of self-assembly induced by solvent evaporation, we used the amphiphilic PEO-b-PS diblock copolymers resol and cobalt nitrate as a template to synthesize ordered mesoporous CoOx/C nanocomposites. Then, the CoOx/C nanocomposites were modified on a glassy carbon electrode (GCE), which showed excellent sensitivity, good selectivity, and a wide detection range for nitrite. Through cyclic voltammetry and current–time techniques, the electrochemical performance of the GCE modified with CoOx/C nanocomposites was analyzed. Under the optimized conditions, we found that anodic currents were linearly related to nitrite concentrations with a regression equation of lp (µA) = 0.36388 + 0.01616C (R2 = 0.9987) from 0.2 µM to 2500 µM, and the detection limit was 0.05 µM. Furthermore, the electrochemical sensor behaved with high reproducibility and anti-interference ability towards various organic and inorganic ions, such as NO3−, SO42−, Cl−, COOH− (Ac−), Na+, K+, Mg2+, and NH4+. Our results indicated that these CoOx/C nanocomposites could be applied in electrochemical sensors for the rapid and sensitive detection of the food preservative nitrite.
Collapse
|
12
|
Rong M, Wang D, Li Y, Zhang Y, Huang H, Liu R, Deng X. Green-Emitting Carbon Dots as Fluorescent Probe for Nitrite Detection. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Lu S, Jia H, Hummel M, Wu Y, Wang K, Qi X, Gu Z. Two-dimensional conductive phthalocyanine-based metal-organic frameworks for electrochemical nitrite sensing. RSC Adv 2021; 11:4472-4477. [PMID: 35424394 PMCID: PMC8694451 DOI: 10.1039/d0ra10522h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
2D nickel phthalocyanine based MOFs (NiPc-MOFs) with excellent conductivity were synthesized through a solvothermal approach. Benefiting from excellent conductivity and a large surface area, 2D NiPc-MOF nanosheets present excellent electrocatalytic activity for nitrite sensing, with an ultra-wide linear concentration from 0.01 mM to 11 500 mM and a low detection limit of 2.3 μM, better than most reported electrochemical nitrite sensors. Significantly, this work reports the synthesis of 2D conductive NiPc-MOFs and develops them as electrochemical biosensors for non-enzymatic nitrite determination for the first time.
Collapse
Affiliation(s)
- Shun Lu
- Department of Agricultural and Biosystems Engineering, South Dakota State University Brookings South Dakota 57007 USA
| | - Hongxing Jia
- Department of Agricultural and Biosystems Engineering, South Dakota State University Brookings South Dakota 57007 USA
| | - Matthew Hummel
- Department of Agricultural and Biosystems Engineering, South Dakota State University Brookings South Dakota 57007 USA
| | - Yanan Wu
- School of Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Keliang Wang
- Fraunhofer Center for Coatings and Diamond Technologies, Michigan State University East Lansing MI 48824 USA
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 People's Republic of China
| | - Zhengrong Gu
- Department of Agricultural and Biosystems Engineering, South Dakota State University Brookings South Dakota 57007 USA
| |
Collapse
|
14
|
Wang M, Kang X, Deng L, Wang M, Xia Z, Gao D. Deep eutectic solvent assisted synthesis of carbon dots using Sophora flavescens Aiton modified with polyethyleneimine: Application in myricetin sensing and cell imaging. Food Chem 2020; 345:128817. [PMID: 33307432 DOI: 10.1016/j.foodchem.2020.128817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Here, an efficient method for synthesizing carbon dots (CDs) using a deep eutectic solvent (DES) was developed. To investigate the influence of different DESs on the quantum yield of CDs, different hydrogen-bonding acceptors (HBAs) and hydrogen-bonding donors (HBDs) were used to synthesize the DES and prepare CDs. Using Sophora flavescens Aiton as precursor, CDs were prepared using choline chloride (ChCl)/urea based DES as reaction media and doping agent in the presence of water. The CDs showed strong blue fluorescence and were further modified with polyethyleneimine (CDs@PEI). The fluorescence intensity of CDs@PEI was selectively quenched by myricetin with a limit of detection (LOD) of 10 nM. Furthermore, CDs@PEI was used to analyze myricetin in the extracts that were fluorescent by DES with satisfactory performance of Abelmoschus manihot (Linn.) Medicus flowers, vine teas and blueberries. Finally, the bio-imaging application of CDs@PEI was tested and the results confirmed its potential application in bio-imaging.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xun Kang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linlin Deng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
15
|
Film Carbon Veil-Based Electrode Modified with Triton X-100 for Nitrite Determination. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A film carbon veil-based electrode (FCVE) modified with non-ionic surfactant Triton X-100 (TrX100) has been developed for nitrite determination. A new simple and producible technique of hot lamination (heat sealing) has been used for the FCVE manufacturing. The paper presents the findings of investigating the FCVE and the TrX100/FCVE by using voltammetry, chronoamperometry, and scanning electron microscopy. Modification of the electrode with TrX100 improves the hydrophilic property of its surface, which results in a larger electrode active area and higher sensitivity. Optimal conditions for nitrite determination with the use of the TrX100/FCVE have been identified. The linear range (LR) and the limit of detection (LOD) are 0.1–100 μM and 0.01 μM, respectively. The relative standard deviation (RSD) does not exceed 2.3%. High selectivity of the sensor ensures its successful application for the analysis of real samples (sausage products and natural water). The obtained results accord well with the results of the standard spectrophotometric method.
Collapse
|