1
|
Trigueros E, Benito-Román Ó, Oliveira AP, Videira RA, Andrade PB, Sanz MT, Beltrán S. Onion ( Allium cepa L.) Skin Waste Valorization: Unveiling the Phenolic Profile and Biological Potential for the Creation of Bioactive Agents through Subcritical Water Extraction. Antioxidants (Basel) 2024; 13:205. [PMID: 38397803 PMCID: PMC10886289 DOI: 10.3390/antiox13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Onion skin waste (OSW), the primary non-edible byproduct from onion processing, offers a renewable source of bioactive compounds. This study aims to valorize OSW through subcritical water extraction (SWE), aligning with a circular economy and biorefinery principles. SWE was carried out at 145 °C and 50 bar for 50 min in a discontinuous reactor, producing a phenolic-rich extract (32.3 ± 2.6 mg/g) dominated by protocatechuic acid (20.3 ± 2.5 mg/g), quercetin-4'-O-glucoside (7.5 ± 0.2 mg/g), and quercetin (3.2 ± 0.6 mg/g). Additionally, the extract contains sugars (207.1 ± 20.3 mg sucrose-Eq/g), proteins (22.8 ± 1.6 mg BSA-Eq/g), and free amino acids (20.4 ± 1.2 mg arginine-Eq/g). Its phenolic richness determines its scavenging activity against ●NO and O2●- radicals and its α-glucosidase and aldose-reductase inhibition without affecting α-amylase. Notably, the extract demonstrates significant α-glucosidase inhibition (IC50 = 75.6 ± 43.5 µg/mL), surpassing acarbose (IC50 = 129.5 ± 1.0 µg/mL) in both pure enzyme and cell culture tests without showing cytotoxicity to AGS, HepG2, and Caco-2 human cell lines. The extract's bioactivity and nutritional content make it suitable for developing antioxidant and antidiabetic nutraceutical/food components, highlighting SWE's potential for OSW valorization without using organic solvents.
Collapse
Affiliation(s)
- Esther Trigueros
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Óscar Benito-Román
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Andreia P. Oliveira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - Romeu A. Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - María Teresa Sanz
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| |
Collapse
|
2
|
Antioxidant Compounds in the Treatment of Alzheimer's Disease: Natural, Hybrid, and Synthetic Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8056462. [PMID: 36865743 PMCID: PMC9974281 DOI: 10.1155/2023/8056462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) which is associated with cognitive dysfunction and memory lapse has become a health concern. Various targets and pathways have been involved in AD's progress, such as deficit of acetylcholine (ACh), oxidative stress, inflammation, β-amyloid (Aβ) deposits, and biometal dyshomeostasis. Multiple pieces of evidence indicate that stress oxidative participation in an early stage of AD and the generated ROS could enable neurodegenerative disease leading to neuronal cell death. Hence, antioxidant therapies are applied in treating AD as a beneficial strategy. This review refers to the development and use of antioxidant compounds based on natural products, hybrid designs, and synthetic compounds. The results of using these antioxidant compounds were discussed with the given examples, and future directions for the development of antioxidants were evaluated.
Collapse
|
3
|
The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review. FOOD BIOPROCESS TECH 2023; 16:691-703. [PMID: 36062030 PMCID: PMC9427156 DOI: 10.1007/s11947-022-02895-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The concept of functional foods is gaining more importance due to its role in maintaining a healthy status and preventing some metabolic diseases. The control of diabetes, in particular type-2 (T2DM), could be considered a big challenge since it involves other factors such as eating habits. From the pharmacological point of view, inhibiting digestive enzymes, such as α-amylase and α-glucosidase, is one of the mechanisms mainly used by synthetic drugs to control this disease; however, several side effects are described. For that reason, using bioactive compounds may appear as an alternative without presenting the complications synthetic drugs available on the market have. The winemaking industry generates tons of waste annually, and grape pomace (GP) is the most important. GP is recognized for its nutritional value and as a source of bioactive compounds that are helpful for human health. This review highlights the importance of GP as a possible source of α-amylase and α-glucosidase inhibitors. Also, it is emphasized the components involved in this bioactivity and the possible interactions among them. Especially, some phenolic compounds and fiber of GP are the main ones responsible for interfering with the human digestive enzymes. Preliminary studies in vitro confirmed this bioactivity; however, further information is required to allow the specific use of GP as a functional ingredient inside the market of products recommended for people with diabetes. Graphical abstract
Collapse
|
4
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
5
|
Díaz N, Aqueveque PM, Vallejos-Almirall A, Radrigán R, Zúñiga-López MC, Folch-Cano C. Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants (Basel) 2022; 11:antiox11102017. [PMID: 36290740 PMCID: PMC9598612 DOI: 10.3390/antiox11102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Grape pomace (GP) is a by-product resulting from the winemaking process and its potential use as a source of bioactive compounds is well known. The GP bioactive compounds can be retained in the well-known polyvinylpolypyrrolidone (PVPP), industrially used in the clarification and stabilization of wine and other drinks. Thus, the polyphenolic compounds (PC) from the Chilean Carménère, Cabernet Sauvignon, and Merlot GP were extracted, and their compositions and antioxidant capacities (ORAC-FL) were determined. In addition, the retention capacity of the PC on PVPP (PC-PVPP) was evaluated. The bioactivities of GP extracts and PC-PVPP were estimated by the agar plate inhibition assay against pathogenic microorganisms. Results showed a high amount of TPC and antioxidant capacity in the three ethanolic GPs extracts. Anthocyanins, flavan-3-ol, and flavonols were the most abundant compounds in the GP extract, with retentions between 70 and 99% on PVPP. The GP extracts showed inhibition activity against B. cereus and P. syringae pv. actinidiae but the GP-PVPP had no antimicrobial activity. The high affinity of the identified PCs from GPs on PVPP polymer could allow the design of new processes and by-products for the food or cosmeceutical industry, promoting a circular economy by reducing and reusing wastes (GPs and PVPP) and organic solvents.
Collapse
Affiliation(s)
- Nelson Díaz
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Pedro M. Aqueveque
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Edmundo Larenas 64, Concepción 4070386, Chile
| | - Rudi Radrigán
- Centro de Desarrollo Tecnológico Agroindustrial (CDTA), Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - María C. Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Folch-Cano
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
- Correspondence: ; Tel.: +56-42-2207578
| |
Collapse
|
6
|
Zhang S, Duangjan C, Tencomnao T, Wu L, Wink M, Lin J. Oolonghomobisflavans exert neuroprotective activities in cultured neuronal cells and anti-aging effects in Caenorhabditis elegans. Front Aging Neurosci 2022; 14:967316. [PMID: 36158534 PMCID: PMC9490402 DOI: 10.3389/fnagi.2022.967316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Potential health benefits of tea has attracted significant scientific and public attention worldwide. Tea polyphenols are considered as natural promising complementary therapeutical agents for neurodegenerative diseases. However, the anti-neurodegeneration or anti-aging activities of oolong tea polyphenols have not been investigated. The current study aims to document beneficial effects of oolong tea polyphenols [dimers of epigallocatechin gallate (EGCG), oolonghomobisflavan A (OFA), and oolonghomobisflavan B (OFB)] with neuroprotective and neuritogenesis properties in cultured neuronal (Neuro-2a and HT22) cells and Caenorhabditis elegans models. In vitro, we found that the compounds (EGCG, OFA, and OFB) protect against glutamate-induced neurotoxicity via scavenging radical activity, suppression intracellular ROS and up-regulation of antioxidant enzymes. Moreover, the compounds induce neurite outgrowth via up-regulate Ten-4 gene expression. Interestingly, OFA and OFB exert stronger neuroprotective and neurite outgrowth properties than EGCG known as an excellent antioxidant agent in tea. In vivo, we found that the compounds protect against C. elegans Aβ-induced paralysis, chemotaxis deficiency and α-synuclein aggregation. Moreover, the compounds are capable of extending the lifespan of C. elegans. OFA and OFB possess both anti-neurodegeneration and anti-aging activities, supporting its therapeutic potential for the treatment of age-related neurodegenerative diseases which need to be studied in more detail in intervention studies.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Chatrawee Duangjan
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- *Correspondence: Michael Wink,
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Jinke Lin,
| |
Collapse
|
7
|
Zhang C, Zhang X, Zhang M. Exosomes Derived from Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSC) Protect Submandibular Glands in Diabetic Rats. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assess whether exosomes derived from bone marrow mesenchymal stem cells (BM-MSC) ameliorates diabetic salivary gland complications. 10 SD rats were assigned into diabetes group I and exosome treatment group II. Diabetic rats were induced by streptozotocin (STZ) and injected
with DMSO or exosomes through tail vein followed by collection of submandibular salivary gland samples for histological analysis and TGFβ, Smad2 and Smad3 level by PCR, saliva IgA and serum amylase level. Compared with control mice, exosome treatment mice showed less fibrosis of
the submandibular salivary glands and duct components with a more complete structure. Exosome treatment inhibited TGFβ, Smad2 and Smad3 level to reduce diabetic salivary gland complications, effectively decreased blood sugar level, improved salivary glands function with significantly
reduced serum amylase and salivary IgA levels. In conclusion, BM-MSC-derived exosomes may be a new therapeutic strategy for treating diabetic salivary gland complications.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Endocrinology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 311400, China
| | - Xiaohong Zhang
- Department of Endocrinology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 311400, China
| | - Min Zhang
- Department of Traditional Chinese Medicine Nursing, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 311400, China
| |
Collapse
|
8
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
9
|
Luo S, Sun X, Huang M, Ma Q, Du L, Cui Y. Enhanced Neuroprotective Effects of Epicatechin Gallate Encapsulated by Bovine Milk-Derived Exosomes against Parkinson's Disease through Antiapoptosis and Antimitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5134-5143. [PMID: 33890462 DOI: 10.1021/acs.jafc.0c07658] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epicatechin gallate (ECG) is a main effective catechin widely existing in natural plants and food, with well-known health benefits. The present study first designed a new exosome-based delivery system for ECG and examined its neuroprotective effects on a rotenone (Rot)-induced Parkinson's disease (PD) model in vitro. Exosomes (Exo) were isolated from fresh bovine milk, and their average size was 85.15 ± 2.00 nm. ECG was encapsulated into Exo by a sonication method, and the loading efficiency of ECG-loaded exosomes (ECG-Exo) was 25.96 ± 0.45%. The neuroprotective effects of ECG-Exo were evaluated on Rot-induced SHSY5Y cells and compared with free ECG. Cell viability, cellular reactive oxygen species, apoptosis rate, and the expressions of caspase-3, Bax, Bcl-2, parkin, PINK1, and Atg5 were determined. Our results showed that Exo delivered ECG successfully into SHSY5Y cells and exhibited enhanced neuroprotective effects. ECG-Exo might inhibit SHSY5Y cell damage induced by Rot through antiapoptosis and antimitophagy.
Collapse
Affiliation(s)
- Siqi Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Huang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qianhui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|