1
|
Di D, Zhang R, Li H, Qiu M, Jiang S, Luo S, Sun H, He S. Insights from structural characterization for understanding isolation and impact of roasting on allergenic potential of sesame Oleosins. Food Chem 2025; 481:144095. [PMID: 40188511 DOI: 10.1016/j.foodchem.2025.144095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
A systematic extraction protocol involving multiple oil body washing with buffers of NaHCO₃ (pH 10), NaCl, and urea was investigated, and the enrichment of α-helix-rich hydrophobic proteins were monitored by the spectroscopic techniques, while the isolated proteins were identified as oleosin with a relative content of 81.05 %. Dot-blot analysis revealed the allergenicity was enhanced at 150 °C compared to the unroasted state, followed by a decline at 180 °C. SDS-PAGE and size exclusion chromatography showed the formation of higher molecular weight aggregates during roasting, while spectroscopy methods indicated a complex process of protein unfolding, folding, and re-unfolding, along with secondary structure modifications. Molecular dynamics simulations indicated structural alterations and flexibility changes, especially at the N- and C-terminal domains of oleosins, within the phospholipid membrane. Protein-protein docking demonstrated the strong self-association of oleosins after roasting. This study offers theoretical reference for deeper understanding of the structural alterations of sesame oleosins post-roasting.
Collapse
Affiliation(s)
- Dakai Di
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Rong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Huimei Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Min Qiu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Suwei Jiang
- School of Biology, Food and Environment, Hefei University, 230601, Hefei, Anhui, PR China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
2
|
Vargila F, Bai SMM, Mary JVJ, Citarasu T. Isolation, characterization and antimicrobial properties of hepatopancreas lectin of the freshwater crab Oziotelphusanaga. Protein Expr Purif 2024; 222:106536. [PMID: 38908458 DOI: 10.1016/j.pep.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Lectins are versatile proteins that specifically recognize and interact with sugar moieties expressed on the cell surface. The potential of lectin in drug targeting and delivery has instigated interest to identify natural lectins. Crabs have been identified as a rich source of lectin because the innate immune system is activated on encounter of pathogens and helps in the production of lectin. Although the presence of lectins in crab's hemolymph is well documented, little information about lectin in hepatopancreas, a vital organ for immunity and digestion in crustaceans, is currently available. A calcium dependent lectin (75 kDa) was purified from the hepatopancreas of the freshwater crab Oziotelphusa naga by bioadsorption and fetuin linked Sepharose 4B affinity chromatography technique. The isolated hepatopancreas lectin is calcium dependent and maximum agglutination was observed with rabbit erythrocytes. The hemagglutinating activity of the hepatopancreas lectin was effectively inhibited by sugars, such as α-lactose, GlcNAc, trehalose and NeuAc. Compared to sialylated N-glycosylated proteins including transferrin and apo transferrin, sialylated O-glycosylated proteins like fetuin exhibited stronger inhibitory effect. The ability of erythrocytes to bind hepatopancreas lectin has been diminished by desialylation of the potent inhibitor, indicating the significance of sialic acid in lectin-ligand interactions. The purified hepatopancreas lectin showed a broad spectrum of antimicrobial activity against bacteria Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, E. coli and fungi Candida albicans and Aspergillus niger. The findings of this study demonstrate the significance of hepatopancreas lectin as a multifunctional defense protein that inhibits the growth of bacteria and fungi.
Collapse
Affiliation(s)
- F Vargila
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India.
| | - S Mary Mettilda Bai
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India.
| | - J Vinoliya Josephine Mary
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
3
|
Gao K, He S, Chen H, Wang J, Li X, Sun H, Zhang Y. Insight of pH-shifting as an effective pretreatment to reduce the antigenicity of lectin from red kidney bean (Phaseolus vulgaris L.) combining with autoclaving treatments: The structure investigation. Food Chem 2024; 434:137429. [PMID: 37716149 DOI: 10.1016/j.foodchem.2023.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Combined effects of pH-shifting and an autoclaving cycle (121 °C, 15 min) on red kidney bean lectin (RKBL) were investigated using intrinsic and extrinsic fluorescence, UV, FTIR, DSC, SEC, dot-blot analysis and in vitro digestibility. Spectroscopic studies suggested that the protein refolding was stable after 3 h incubation with the hydrophobic exposure after pH-shifting, and hydrophobicity was significantly increased with the formation of more looser structure, which would influence the structural stability of known epitopes. In details, the increase of β-turn and reduction of random coil was related with the lower denaturation enthalpy, while the protein aggregation was also observed in acidic treated samples after autoclaving. Lower antigenicity and good digestibility suggested the exposure of enzyme cutting sites, and confirmed the effectivity of pH-shifting prior to the autoclaving. Then the results would be beneficial to the development of hypoallergenic kidney bean foods.
Collapse
Affiliation(s)
- Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Haoshuang Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Junhui Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Zhang Z, Liu C, Wu S, Ma T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean ( Phaseolus vulgaris L.): A Systematic Review. Foods 2023; 12:3697. [PMID: 37835350 PMCID: PMC10572541 DOI: 10.3390/foods12193697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney beans (KBs), as a traditional edible legume, are an important food crop of high nutritional and economic value worldwide. KBs contain a full range of amino acids and a high proportion of essential amino acids, and are rich in carbohydrates as well as vitamins and minerals. However, KBs contain a variety of non-nutritional factors that impede the digestion and absorption of nutrients, disrupt normal metabolism and produce allergic reactions, which severely limit the exploitation of KBs and related products. Suppressing or removing the activity of non-nutritional factors through different processing methods can effectively improve the application value of KBs and expand the market prospect of their products. The aim of this review was to systematically summarize the main types of non-nutritional factors in KBs and their mechanisms of action, and to elucidate the effects of different food processing techniques on non-nutritional factors. The databases utilized for the research included Web of Science, PubMed, ScienceDirect and Scopus. We considered all original indexed studies written in English and published between 2012 and 2023. We also look forward to the future research direction of producing KB products with low non-nutritional factors, which will provide theoretical basis and foundation for the development of safer and healthier KB products.
Collapse
Affiliation(s)
- Zifan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sisi Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Li M, Wang B, Lv W, Lin R, Zhao D. Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yan X, Wang Y, Chen Y, Xie J, Yu Q. Effect of roasting duration on the solubility, structure, and IgE-binding capacity of cashew nut proteins. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Gao Y, Zhang M, Zhou X, Guo X, Lei C, Li W, Lu D. Effects of Carbon Ion Beam Irradiation on Butanol Tolerance and Production of Clostridium acetobutylicum. Front Microbiol 2020; 11:602774. [PMID: 33391222 PMCID: PMC7775398 DOI: 10.3389/fmicb.2020.602774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023] Open
Abstract
Clostridium acetobutylicum (C. acetobutylicum) has considerable potential for use in bioenergy development. Owing to the repeated use of traditional mutagenesis methods, the strains have developed a certain tolerance. The rheology of the bioprocess and the downstream processing of the product heavily depend on the ability of C. acetobutylicum mutants to produce butanol. Carbon ion beam irradiation has advantages over traditional mutation methods for fermentative production because of its dose conformity and superb biological effectiveness. However, its effects on the specific productivity of the strains have not been clearly understood. In this study, we screened five mutants through carbon ion beam irradiation; mutant Y217 achieved a butanol-production level of 13.67 g/L, exceeding that of wild-type strain ATCC 824 (i.e., 9.77 g/L). In addition, we found that the mutant maintained normal cell membrane integrity under the stimulation of 15 g/L butanol, whereas the intracellular macromolecules of wild-type strain ATCC 824 leaked significantly. Subsequently, we used the response surface methodology (RSM) to determine if the mutant cell membrane integrity improved the butanol tolerance. We verified that with the addition of butanol, the mutant could be fermented to produce 8.35 g/L butanol, and the final butanol concentration in the fermentation broth could reach 16.15 g/L. In this study, we proved that under butanol stress, mutant Y217 features excellent butanol production and tolerance and cell membrane integrity and permeability; no prior studies have attempted to do so. This will serve as an interesting and important illustration of the complexity of genetic control of the irradiation mutation of C. acetobutylicum strains. It may also prove to be useful in the bioengineering of strains of the mutant for use in the predevelopment stage.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|