1
|
Kleuter M, Yu Y, Pancaldi F, van der Goot AJ, Trindade LM. Prone to loss: Senescence-regulated protein degradation leads to lower protein extractability in aging tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112284. [PMID: 39414151 DOI: 10.1016/j.plantsci.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The utilization of proteins extracted from tomato (Solanum lycopersicum) leaves as cost-effective resources for human consumption or animal feed has gained interest. Thus, increasing protein extractability from tomato leaves became a new breeding target. However, the genetic factors influencing this trait remains poorly understood. In this study, we analyzed changes in leaf protein content, protein composition, and extraction yield across developmental stages, which are vegetative growth, flowering, fruit-forming, and mature fruit. Moreover, tomato gene expression across developmental stages was also studied, to identify genes underlying variability in leaf protein extraction. Protein extraction yield decreased from 0.51 g/g to 0.01 g/g leaf protein from the vegetative to mature stage. However, total protein content inferred with Dumas combustion analysis did not change over the developmental stages tested, while the protein-to-peptide ratio decreased significantly. To further analyze potential causes underlying the decline of protein-to-peptide ratio, the enzymatic activity of proteases - i.e. the enzymes responsible for protein degradation - and the expression of genes encoding these enzymes was studied along plant development. The overall specific activity of proteases did not change significantly throughout plant development. On the contrary, the gene expression of distinct members of the aspartic, cysteine, and subtilase protease families increased. Overall, our findings suggest that extraplastidic protein degradation likely underlies the protein degradation observed during senescence. In the future, the reduction of the activity of extraplastidic proteases through biotechnology could represent an effective strategy to develop tomato varieties with improved protein extraction yields.
Collapse
Affiliation(s)
- Marietheres Kleuter
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Francesco Pancaldi
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Luisa M Trindade
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| |
Collapse
|
2
|
Zhang L, Wu G, Li D, Huang A, Wang X. Isolation and identification of milk-clotting proteases from Prinsepia utilis Royle and its application in cheese processing. Food Res Int 2024; 183:114225. [PMID: 38760144 DOI: 10.1016/j.foodres.2024.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
The aim of this study was to isolate and identify the main milk-clotting proteases from Prinsepia utilis Royle. Protein isolates obtained using precipitation with 20 %-50 % ammonium sulfate (AS) showed higher milk-clotting activity (MCA) at 154.34 + 0.35 SU. Two milk-clotting proteases, namely P191 and P1831, with molecular weight of 49.665 kDa and 68.737 kDa, respectively, were isolated and identified using liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatic analysis showed that the two identified milk-clotting proteases were primarily involved in hydrolase activity and catabolic processes. Moreover, secondary structure analysis showed that P191 structurally consisted of 40.85 % of alpha-helices, 15.96 % of beta-strands, and 43.19 % of coiled coil motifs, whereas P1831 consisted of 70 % of alpha-helices, 7.5 % of beta-strands, and 22.5 % of coiled coil motifs. P191 and P1831 were shown to belong to the aspartic protease and metalloproteinase types, and exhibited stability within the pH range of 4-6 and good thermal stability at 30-80 °C. The addition of CaCl2 (<200 mg/L) increased the MCA of P191 and P1831, while the addition of NaCl (>3 mg/mL) inhibited their MCA. Moreover, P191 and P1831 preferably hydrolyzed kappa-casein, followed by alpha-casein, and to a lesser extent beta-casein. Additionally, cheese processed with the simultaneous use of the two proteases isolated in the present study exhibited good sensory properties, higher protein content, and denser microstructure compared with cheese processed using papaya rennet or calf rennet. These findings unveil the characteristics of two proteases isolated from P. utilis, their milk-clotting properties, and potential application in the cheese-making industry.
Collapse
Affiliation(s)
- Lu Zhang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Gaizhuan Wu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dong Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Arbita AA, Zhao J. Milk clotting enzymes from marine resources and their role in cheese-making: A mini review. Crit Rev Food Sci Nutr 2023; 64:10036-10047. [PMID: 37287272 DOI: 10.1080/10408398.2023.2220030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the continual increase in global cheese consumption, rennet, the traditional milk coagulant, is unable to meet the growing demand in cheese production. Although several proteases from other sources have been used for cheese-making, they suffer various shortcomings. The ocean is home to a huge and diverse range of life forms, which represent a vast potential source of proteases. Marine proteases have been isolated from a number of marine species, including sponge, jellyfish, seaweed and marine animals, and some have been shown to be suitable as milk-clotting enzymes for cheese making. This review summarizes the latest studies on rennet substitutes from marine resources and their role in cheese-making. The emphasis of the review is on the isolation and purification of the marine proteases, the biochemical characteristics of these enzymes, especially their caseinolytic and milk-clotting properties, as well as their cleavage sites on casein. Some of the marine proteases have been applied as milk-clotting agent in cheese-making, with the resultant production of cheese with comparable characteristics, including sensory characteristics, to calf rennet cheese. The review concludes by highlighting the challenges and opportunities for future research in the field.
Collapse
Affiliation(s)
- Ariestya Arlene Arbita
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, Faculty of Industrial and Technology, Parahyangan Catholic University, Bandung, Indonesia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Zhu X, Hua Y, Kong X, Li X, Chen Y, Zhang C. Characterization of proteases from Irpex lacteus grown on minimally denatured soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1800-1809. [PMID: 36317244 DOI: 10.1002/jsfa.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean β-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both β-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
5
|
Khoja IA, Arsalan A, Biswas AK, Tandon S. Casein zymography based detection and one step purification for simultaneous quantification of calcium induced endogenous proteases in breast and thigh muscles from different chicken breeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- I. A. Khoja
- Division of Post‐Harvest Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. Arsalan
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. K. Biswas
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | | |
Collapse
|
6
|
Arbita AA, Paul NA, Cox J, Zhao J. Amino acid sequence of two new milk-clotting proteases from the macroalga Gracilaria edulis. Int J Biol Macromol 2022; 211:499-505. [PMID: 35561860 DOI: 10.1016/j.ijbiomac.2022.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
Abstract
This study is aimed at identifying and characterising the proteases we previously extracted from the red seaweed Gracilaria edulis with the potential as milk-clotting enzymes. The protease extract was first analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymography. Two protease bands with a molecular weight of 44 and 108 kDa were identified, and analysed using in-gel digestion and liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS). Eight peptides from the LC-MS/MS analysis matched those in existing protein databases but they were not related to any protease of the genera Gracilaria and Hydropuntia. Further analysis revealed that more than 80% of the peptide sequence of the algal proteases matched with those from members of the bacteria kingdom, including Gallaecimonas and Alteromonas. Among these, twelve matching homolog proteases were identified as metalloprotease and serine protease. The results indicated that the algal proteases have a close relationship with both algae and bacteria, and suggest that the proteases might have resulted from past bacterial colonisation of the algae and subsequent horizontal gene transfer between bacteria and algae.
Collapse
Affiliation(s)
- Ariestya Arlene Arbita
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; School of Chemical Engineering, Faculty of Industrial and Technology, Parahyangan Catholic University, Ciumbuleuit 94, Bandung 40141, Indonesia
| | - Nicholas A Paul
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Julian Cox
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Song Z, Zhang Y, Wen P, Wang Y, Qiao H, Zhang W, Zhang Z. Effect of pH on the coagulation properties of
Tenebrio molitor
coagulant. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaoyang Song
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| | - Yan Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| | - Pengcheng Wen
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| | - Yue Wang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| | - Haijun Qiao
- College of Science Gansu Agricultural University Lanzhou Gansu China
| | - Weibing Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| | - Zhongming Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou Gansu China
| |
Collapse
|