1
|
Oh J, Lee KG. Analysis of physicochemical properties of nut-based milk and sweetened condensed milk alternatives. Food Chem 2024; 455:139991. [PMID: 38850990 DOI: 10.1016/j.foodchem.2024.139991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
This study analyzed the physicochemical properties of nut-based milk and sweetened condensed milk (SCM) alternatives. Four types of nuts (almonds, cashews, hazelnuts, and walnuts) were roasted at 140 °C for 15 min, followed by the preparation and analysis of milk and SCM alternatives. During the production of SCM by heating with adding sugar, the pH, moisture, and L* decreased, while the carbohydrates, viscosity, and browning index increased significantly (p < 0.05). Oleic acid, linoleic acid, and linolenic acid contents were comparable among all samples (p > 0.05). Volatile compounds were analyzed using HS-SPME-GC-MS to determine changes due to roasting and heating, and a total of 54 volatile compounds were identified. These findings to show the importance of the physicochemical characteristics of milk and SCM alternatives, provide practical information for the development of improved-quality dairy alternatives.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
2
|
Oh J, Lee Y, Lee KG. Analytical methods, risk assessment, and mitigation strategies for furan in processed foods in various countries. Food Sci Biotechnol 2024; 33:2427-2440. [PMID: 39144195 PMCID: PMC11319557 DOI: 10.1007/s10068-024-01578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 04/01/2024] [Indexed: 08/16/2024] Open
Abstract
This article provides an overview of analytical methods for measuring furan levels in food. Given the potential carcinogenicity of furans in humans, several studies have focused on assessing furan levels in various food products. In this review, we specifically examine furan levels in foods that are central to regional culinary traditions and summarize the results of country-specific risk assessments. Consequently, we have identified foods that contribute significantly to dietary furan exposure in each region. Coffee and baby foods, regardless of region, emerged as the primary sources of furan intake among adults and infants, respectively. Several previous studies have been conducted to develop various mitigation strategies aimed at reducing exposure to furan through food intake. Therefore, in this paper, we categorize effective mitigation strategies into two main groups: alterations to processing conditions and the addition or removal of food additives and ingredients.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Yoojeong Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| |
Collapse
|
3
|
Alsafra Z, Kuuliala L, Scholl G, Saegerman C, Eppe G, De Meulenaer B. Characterizing the formation of process contaminants during coffee roasting by multivariate statistical analysis. Food Chem 2023; 427:136655. [PMID: 37364312 DOI: 10.1016/j.foodchem.2023.136655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Coffee is a relevant source of dietary exposure for neoformed furan, alkyl furans and acrylamide. In this study, different statistical methods (hierarchical cluster analysis, correlation analysis, partial least squares regression analysis) were used for characterizing the formation of these process contaminants in green coffee beans roasted under the same standardized conditions. The results displayed a strong correlation between sucrose levels and furans in relation to the other sugars analyzed, while acrylamide formation was strongly related to the free asparagine. The data suggest that a sufficiently large amino acid pool in green coffee favors Maillard-induced acrylamide formation from asparagine, while reactions amongst the carbonyl-containing sugar fragmentation products leading to furan formation are suppressed. If the pool of free amino acids is small, it is depleted faster during roasting, thus favoring the formation of furans by caramelization, basically a sugar degradation process in which reactive carbonyl substances are generated and react together.
Collapse
Affiliation(s)
- Zouheir Alsafra
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
| | - Lotta Kuuliala
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Research Unit Knowledge-based Systems, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 10 Avenue de Cureghem, Sart-Tilman, B-4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium.
| | - Bruno De Meulenaer
- Research Group Food Chemistry and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Jia Y, Yuan B, Yang Y, Zheng C, Zhou Q. Flavor characteristics of peeled walnut kernels under two-steps roasting processes. Food Chem 2023; 423:136290. [PMID: 37178596 DOI: 10.1016/j.foodchem.2023.136290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Currently, the effects of roasting methods on the flavor profile of peeled walnut kernels (PWKs) remain unknown. The effects of hot air binding (HAHA), radio frequency (HARF), and microwave irradiation (HAMW) on PWK were evaluated using olfactory, sensory, and textural techniques. Solvent Assisted Flavor Evaporation-Gas Chromatography-Olfactometry (SAFE-GC-O) identified 21 odor-active compounds with total concentrations of 229 μg/kg, 273 μg/kg and 499 μg/kg due to HAHA, HARF, and HAMW, respectively. HAMW exhibited the most prominent nutty taste, with the highest response among roasted milky sensors with the typical aroma of 2-ethyl-5-methylpyrazine. HARF had the highest values for chewiness (5.83 N·mm) and brittleness (0.68 mm); however, these attributes did not contribute to the flavor profile. The partial least squares regression (PLSR) model and VIP values showed 13 odor-active compounds were responsible for the sensory differences from different processes. The two-step treatment with HAMW improved the flavor quality of PWK.
Collapse
Affiliation(s)
- Yimin Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Binhong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yini Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Huang H, Chen J, Zheng M, Zhang L, Ji H, Cao H, Dai F, Wang L. Precursors and formation pathways of furfural in sugarcane juice during thermal treatment. Food Chem 2023; 402:134318. [DOI: 10.1016/j.foodchem.2022.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
7
|
Kim S, Lee H, Lee KG. Analysis of Furan in Red Pepper Powder Treated by Three Methods-Boiling, Roasting, and Frying. Front Nutr 2022; 9:888779. [PMID: 35651511 PMCID: PMC9149621 DOI: 10.3389/fnut.2022.888779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, furan analysis was conducted on dried red pepper powder treated by three cooking methods (boiling, roasting, and frying). A total of 144 samples were prepared and their furan levels were analysed using automated solid-phase micro-extraction gas chromatography-mass spectrometry. The furan concentration in boiled soup ranged from 1.26 to 4.65 ng/g, and from 7.37 to 27.68 ng/g for boiled red pepper samples. For the roasting method, a furan concentration between 6.66 and 761.37 ng/g was detected. For the frying method, the furan level of edible oils ranged from 3.93 to 125.88 ng/g, and a concentration ranging from 4.88 to 234.52 ng/g was detected for the fried red pepper samples. The cooking method using edible oil obtained a higher furan concentration than the water-based method. Samples using corn germ oil (linoleic acid-rich oil) obtained the highest furan concentration among the four edible oils. In all cooking methods, the higher the heating temperature and time, the higher the furan concentration detected. A kinetic study was conducted using the roasting model system and the apparent activation energy was 60.5 kJ/mol. The results of this study could be useful as a database for furan concentration in dried red pepper powder according to various cooking methods.
Collapse
Affiliation(s)
| | | | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Seoul, South Korea
| |
Collapse
|
8
|
Alsafra Z, Renault V, Parisi G, Scholl G, Meulenaer BD, Eppe G, Saegerman C. Consumption Habits and Brand Loyalty of Belgian Coffee Consumers. Foods 2022; 11:foods11070969. [PMID: 35407056 PMCID: PMC8997902 DOI: 10.3390/foods11070969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 01/26/2023] Open
Abstract
Coffee is usually subjected to a roasting process which is responsible for the formation of aroma and flavours but also of some undesirable compounds such as furan and alkyl furans. These compounds are known as process contaminants of the roasting process and exhibit some harmful effects. In order to evaluate the exposure to these compounds in coffee, it is necessary to know the levels of contamination as well as consumption habits. The degree of consumers’ loyalty to specific coffee brands could also be an important driver affecting the level of exposure. This research aimed to evaluate the levels of consumption and the degree of loyalty to coffee brands available in Belgian markets, as well as the factors affecting the choice and the consumption of coffee products and coffee brands. Data were collected in Belgium through an online survey. The results show that for the 1930 participants, 87% reported daily coffee consumption and 13% never or occasionally consumed coffee. The global median coffee consumption was 3 cups per day, and the median for individual daily consumers only was 4 cups per day. The level of consumption of ground coffee was about twice higher than coffee beans, followed by instant coffee and relatively very low consumption of coffee substitutes. In total, 78% of participants reported brand loyalty but to different degrees. Two coffee brands sold in Belgian regions were listed together by more than 20% of the survey participants. The most frequent criteria for selecting a specific coffee brand were taste and price, followed by tradition and habit. The age of coffee consumers and several sociodemographic characteristics have significant effects on coffee consumption. The type of coffee product, the degree of loyalty, and also the type of packaging should be further considered (when available) in the exposure assessment to furan compounds.
Collapse
Affiliation(s)
- Zouheir Alsafra
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium; (Z.A.); (G.S.); (G.E.)
| | - Véronique Renault
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Fundamental and Applied Research for Animal Health (FARAH) Centre, Faculty of Veterinary Medicine, University of Liege, Boulevard de Colonster 20, B-42 Sart-Tilman, B-4000 Liege, Belgium; (V.R.); (G.P.)
| | - Gianni Parisi
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Fundamental and Applied Research for Animal Health (FARAH) Centre, Faculty of Veterinary Medicine, University of Liege, Boulevard de Colonster 20, B-42 Sart-Tilman, B-4000 Liege, Belgium; (V.R.); (G.P.)
| | - Georges Scholl
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium; (Z.A.); (G.S.); (G.E.)
| | - Bruno De Meulenaer
- Department of Food Safety and Food Quality, nutriFOODchem Unit, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium; (Z.A.); (G.S.); (G.E.)
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Fundamental and Applied Research for Animal Health (FARAH) Centre, Faculty of Veterinary Medicine, University of Liege, Boulevard de Colonster 20, B-42 Sart-Tilman, B-4000 Liege, Belgium; (V.R.); (G.P.)
- Correspondence:
| |
Collapse
|
9
|
Gill S, Kavanagh M, Poirier C, Xie R, Koerner T. Proteomic Analysis of Subchronic Furan Exposure in the Liver of Male Fischer F344 Rats. Toxicol Pathol 2021; 50:47-59. [PMID: 34911408 DOI: 10.1177/01926233211056859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Furan is a volatile compound formed during the thermal processing of foods. Chronic exposure has been shown to cause cholangiocarcinoma and hepatocellular tumors in rodent models. We conducted a 90 day subchronic study in Fisher 344 rats exposed to various doses by gavage to determine the NOAEL. Previous reports have outlined changes in the liver using gross necropsy examination, histopathology, clinical biochemistry, hematology, immunohistochemistry, and toxicogenomics. The data revealed that males were more sensitive than females. The focus of this study was to evaluate the toxicoproteomic changes by 2-dimensional differential in gel electrophoresis followed by mass spectrometry analysis. To compliment previous studies, protein expression changes were evaluated of male animals after 90 days of exposure to doses of 0, 0.03, 0.5, and 8.0 mg/kg bw/d. Significant statistical treatment-related changes compared to the controls identified 45 protein spots containing 38 unique proteins. Proteins identified are implicated in metabolism, redox regulation, protein folding/proteolysis as well as structural and transport proteins. At lower doses, multiple cytoprotective pathways are activated to maintain a homeostasis but ultimately the loss of protein function and impairment of several pathways could lead to adverse health effects at higher doses of furan administration.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, 6348Health Canada, Ottawa, Ontario, Canada
| | - Meghan Kavanagh
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, 6348Health Canada, Ottawa, Ontario, Canada
| | - Christine Poirier
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Ruixi Xie
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Terry Koerner
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Zhang Y, Li X, Lu X, Sun H, Wang F. Effect of oilseed roasting on the quality, flavor and safety of oil: A comprehensive review. Food Res Int 2021; 150:110791. [PMID: 34865806 DOI: 10.1016/j.foodres.2021.110791] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Roasting is widely applied in oil processing and employs high temperatures (90-260 °C) to heat oilseeds evenly. Roasting improves the extraction yield of oil by the generation of pores in the oilseed cell walls, which facilitates the movement of oil from oilseed during subsequent extraction. It also affects the nutritional value and palatability of the prepared oil, which has attracted consumers' attention. An appropriate roasting process contributes to better extraction of bioactive compounds, particularly increasing the total polyphenol content in the oil. Correspondingly, extracted oil exhibits higher antioxidant capacity and oxidative stability after roasting the oilseeds due to better extraction of endogenous antioxidants and the generation of Maillard reaction products. Furthermore, roasting process is critical for the formation of aroma-active volatiles and the improvement of desired sensory characteristics, so it is indispensable for the production of fragrant oil. However, some harmful components are inevitably generated during roasting, including oxidation products, polycyclic aromatic hydrocarbons, and acrylamide. Monitoring and controlling the concentrations of harmful compounds in the oil during the roasting process is important. Therefore, this review updates how roasting affect the quality and safety of oils and provides useful insight into regulation of the roasting process based on bioactive compounds, sensory characteristics, and safety of oils. Further research is required to assess the nutritional value and safety of roasted oils in vivo and to develop a customized roasting process for various oilseeds to produce good-quality oils.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xiaolong Li
- COFCO Nutrition & Health Research Institute, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing 102209, PR China
| | - Xinzhu Lu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Hao Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|