1
|
Zhu Y, Gong C, Pan S, Wu S. Shelf-life extension of soy sauce by using chitosan oligosaccharides combined with tea polyphenols. Food Chem X 2023; 20:100985. [PMID: 38144750 PMCID: PMC10739744 DOI: 10.1016/j.fochx.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Chitosan oligosaccharides (COs) and tea polyphenols (TPs) have antioxidant and antibacterial activities. This study aims to explore the preservative effects of 0.1 % COs alone and combined with 0.08 % TPs on soy sauce during room-temperature storage. Soy sauce treated with 0.1 % COs alone and combined with 0.08 % TPs had lower total bacterial count, Escherichia coli count and pH, and higher amino acid nitrogen and overall likeness score than those of the control group during room-temperature storage. Treatment with 0.1 % COs combined with 0.08 % TPs extended the shelf life of soy sauce by at least 15 months compared with the control group. Results showed 0.1 % COs combined with 0.08 % TPs may be a feasible method to extend the shelf life of soy sauce during room-temperature storage.
Collapse
Affiliation(s)
- Ying Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou, China
| | - Chao Gong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou, China
| | - Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou, China
| |
Collapse
|
2
|
Ma J, Nie Y, Zhang L, Xu Y. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce. Appl Environ Microbiol 2023; 89:e0188422. [PMID: 36802225 PMCID: PMC10056960 DOI: 10.1128/aem.01884-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Strain specificity (within-species variation) of microorganisms occurs widely in nature. It might affect microbiome construction and function in a complex microbial environment. Tetragenococcus halophilus, a halophilic bacterium that generally is used in high salt food fermentation, consists of two histamine-producing and non-histamine-producing subgroups. It is unclear whether and how the strain specificity of histamine-producing capacity influences the microbial community function during food fermentation. Here, based on systematic bioinformatic analysis, histamine production dynamic analysis, clone library construction analysis, and cultivation-based identification, we identified that T. halophilus is the focal histamine-producing microorganism during soy sauce fermentation. Furthermore, we discovered that a larger number and ratio of histamine-producing subgroups of T. halophilus significantly contributed more histamine production. We were able to artificially decrease the ratio of histamine-producing to non-histamine-producing subgroups of T. halophilus in complex soy sauce microbiota and realized the reduction of histamine by 34%. This study emphasizes the significance of strain specificity in regulating microbiome function. This study investigated how strain specificity influenced microbial community function and developed an efficient technique for histamine control. IMPORTANCE Inhibiting the production of microbiological hazards under the assumption of stable and high-quality fermentation is a critical and time-consuming task for the food fermentation industry. For spontaneously fermented food, it can be realized theoretically by finding and controlling the focal hazard-producing microorganism in complex microbiota. This work used histamine control in soy sauce as a model and developed a system-level approach to identify and regulate the focal hazard-producing microorganism. We discovered that the strain specificity of focal hazard-producing microorganisms had an important impact on hazard accumulation. Microorganisms frequently exhibit strain specificity. Strain specificity is receiving increasing interest since it determines not only microbial robustness but also microbial community assembly and microbiome function. This study creatively explored how the strain specificity of microorganisms influenced microbiome function. In addition, we believe that this work provides an excellent model for microbiological hazard control which can promote future work in other systems.
Collapse
Affiliation(s)
- Jinjin Ma
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lijie Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Formation of biogenic amines in soy sauce and reduction via simple phytochemical addition. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Systematic analysis of key fermentation parameters influencing biogenic amines production in spontaneous fermentation of soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chem 2022; 393:133289. [PMID: 35689918 DOI: 10.1016/j.foodchem.2022.133289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Yeast extracts, of which amino acids are the main component, can be directly applied to improve the flavor of final soy sauce. In this study, the potential of commercial yeast extracts was explored from amino acid approach to enhance the flavor quality of soy sauce by shaping the core fermentation microbiota. Alkaline and neutral amino acids favored the competitive benefits of flavor-producing bacteria, while acidic amino acids promoted the stress resistance of the fermentation microbiota, especially the abundance of Lactobacillus, which increased to 18.03-23.78% and became the predominant microbiota. The mass ratio of neutral-nonpolar: neutral-polar: acidic: alkaline amino acids was 40: 18: 27: 15, which provided the optimal improvement of soy sauce aroma. The formulation and activated the metabolic pathways of 3-methyl-1-butyraldehyde, 3-methyl-1-butanol and 2-methyl-1-propanol through Leu and Ile, resulting in a 52.6% increase in malt-like aroma. This study provides a new idea for the regulation of soy sauce fermentation.
Collapse
|
6
|
Zhou TT, Yigaimu A, Muhammad T, Jian PL, Sha LN, Zhang SB. Novel carrier-mediated membrane-assisted three-phase liquid–liquid extraction coupled with liquid chromatography–mass spectrometry for the determination of eight biogenic amines in foods. Food Chem 2022; 387:132857. [DOI: 10.1016/j.foodchem.2022.132857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022]
|
7
|
Liu D, Wang K, Xue X, Wen Q, Qin S, Suo Y, Liang M. The Effects of Different Processing Methods on the Levels of Biogenic Amines in Zijuan Tea. Foods 2022; 11:foods11091260. [PMID: 35563983 PMCID: PMC9103763 DOI: 10.3390/foods11091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of processing methods on the content of biogenic amines in Zijuan tea by using derivatization and hot trichloroacetic acid extraction with HPLC-UV. The results showed that the most abundant biogenic amine in the original leaves was butylamine, followed by ethylamine, methylamine, 1,7-diaminoheptane, histamine, tyramine, and 2-phenethylamine. However, during the process of producing green tea, white tea, and black tea, the content of ethylamine increased sharply, which directly led to their total contents of biogenic amines increasing by 184.4%, 169.3%, and 178.7% compared with that of the original leaves, respectively. Unexpectedly, the contents of methylamine, ethylamine, butylamine, and tyramine in dark tea were significantly reduced compared with those of the original leaves. Accordingly, the total content of biogenic amines in dark tea was only 161.19 μg/g, a reduction of 47.2% compared with that of the original leaves, indicating that the pile-fermentation process could significantly degrade the biogenic amines present in dark tea.
Collapse
Affiliation(s)
- Dandan Liu
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Kang Wang
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Xiaoran Xue
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Qiang Wen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
| | - Shiwen Qin
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Yukai Suo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Mingzhi Liang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China;
| |
Collapse
|
8
|
|
9
|
Xie S, Li Z, Sun B, Zhang Y. Impact of salt concentration on bacterial diversity and changes in biogenic amines during fermentation of farmhouse soybean paste in Northeast China. Curr Res Food Sci 2022; 5:1225-1234. [PMID: 35996617 PMCID: PMC9391506 DOI: 10.1016/j.crfs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Farmhouse soybean paste in Northeast China is a traditional fermented product made from soybean, and more than 11% (w/w) salt is usually added during production to control the fermentation process. In this study, the variations in bacterial diversity, biogenic amines(BAs) and physicochemical properties during the natural fermentation of soybean paste with different salt concentrations (8%, 9%, 10%, 11%, and 12%) were studied. The results show that at 0 days (0 d) of fermentation in soybean paste, the dominant genera included Staphylococcus, unidentified Clostridiales, and Sporolactobacillus. During fermentation from 30 d to 90 d, the dominant genera were Tetragenococcus and Staphylococcus. However, the proportions of the dominant genera were different depending on the salt concentration. Putrescine(Put), tryptamine(Try), β-phenethylamine(Phe), cadaverine(Cad), histamine(His), and tyramine(Tyr) showed negative correlations with salt concentration. The amino type nitrogen(ANN), titratable acidity(TTA) and total number of colonies were also negatively correlated with salt concentration. Analysis of the correlation between genera and BAs showed that 12 genera were positively correlated with BAs, and 4 genera were negatively correlated with BAs. The results of this study indicated that salt has a significant impact on bacterial diversity during the fermentation of soybean paste, which in turn affects the changes in bacterial metabolites. From the perspective of food safety, the amount of salt added in the soybean paste can be reduced to 10% under the existing fermentation conditions. The effect of salt concentration on soybean paste was studied. Salt concentration affected the bacterial diversity and BAs in soybean paste. There was a species succession process in the initial 30 days of fermentation. There was correlation between the BAs and some bacteria in soybean paste.
Collapse
|
10
|
Jia Y, Niu CT, Xu X, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation. Food Res Int 2021; 148:110533. [PMID: 34507779 DOI: 10.1016/j.foodres.2021.110533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
Although the microbial diversity and structure in bean-based fermented foods have been widely studied, systematic studies on functional microbiota and mechanism of community forms in multi-microbial fermentation systems were still lacking. In this work, the metabolic pathway and functional potential of microbial community in broad bean paste (BBP) were investigated by metagenomics approach, and Staphylococcus, Bacillus, Weissella, Aspergillus and Zygosaccharomyces were found to be the potential predominant populations responsible for substrate alteration and flavor biosynthesis. Among them, Staphylococcus was the most abundant and widespread functional microbe, and closely related Staphylococcus species were diverse and ubiquitously distributed, with the opportunistic pathogen S. gallinarum being the most abundant Staphylococcus specie isolated from BBP. To explain the dominance status of S. gallinarum and species distributions of Staphylococcus genus, we tested the effects of abiotic and biotic factors on three Staphylococcus species using a tractable BBP model, demonstrating that adaptation to environmental conditions (environmental parameters and other functional microbes) led to the dominant position and species coexistence of Staphylococcus, and congeneric competition among Staphylococcus species further shaped ecological distributions of closely related Staphylococcus species. In general, this work revealed the metabolic potential of microbial community and distribution mechanism of Staphylococcus species during BBP fermentation, which could help traditional factories to more precisely control the safety and quality of bean-based fermented foods.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|