1
|
Guo KX, Hu B, Jiang Y, Li ZY, Qi J, Yu MM. Comprehensive insights into the mechanism of flavor formation in mandarin fish (Siniperca chuatsi) with inoculated fermentation. Food Chem 2025; 479:143717. [PMID: 40081068 DOI: 10.1016/j.foodchem.2025.143717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
The inoculated fermentation is an effective way to shorten fermentation time and improve the flavor quality in fermented food. Therefore, this work aims to analyze the difference between traditional and inoculated fermentation, and explore the mechanism of flavor formation in mandarin fish during fermentation. Results showed that a total of 67 volatile compounds were detected, and 13 key flavor compounds were identified in fermented mandarin fish. Inoculation promotes the oxidation and hydrolysis of fatty acids, thus forming more aldehydes and alcohols. Moreover, inoculated fermentation inhibited the growth of Enterococcus, Carnobacterium and Morganella, thereby reducing indole content. In addition, inoculation increased the taste activity values of Glu, Gly and Ala, which improved umami taste and sweet taste of fermented mandarin fish. In short, the mixed inoculation shortened the fermentation time from 12d to 8d, which improved the flavor quality of fermented mandarin fish.
Collapse
Affiliation(s)
- Ke-Xun Guo
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Bin Hu
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Yi Jiang
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Zeng-Yong Li
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, China..
| | - Jun Qi
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Man-Man Yu
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China.
| |
Collapse
|
2
|
Zhao X, Chen J, Li H, Zhao Y, Wang W, Li W, Wang Y. Integration of volatilomics and microbiome diversity reveals key flavor-related metabolic pathways in semi-dried large yellow croaker (Pseudosciaena crocea). Food Chem 2025; 470:142518. [PMID: 39740430 DOI: 10.1016/j.foodchem.2024.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
A complex microbial community is critical for developing unique flavors in semi-dried large yellow croaker (Pseudosciaena crocea). Volatilomics analysis identified hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-ol, and butanoic acid were identified as the key flavor compounds in the fish. Clostridium sensu stricto was the dominant genus, with a relative abundance of 79.78 % after 4 days of air-drying. Validation results showed a positive association between the accumulation of nonanal, phenylacetaldehyde, and butanoic acid and the presence of Clostridium sensu stricto. Significant correlations were also observed between the genera of Lactobacillus and Microbacterium and the key flavor compounds of hexanal and heptanal. Microorganisms contribute to the metabolism of these compounds, primarily through the metabolism of phenylalanine, linoleic acid, linolenic acid, arachidonic acid, and pyruvate. This flavor-regulating role of microorganisms presents them as potential targets for flavor enhancement in traditional aquatic products.
Collapse
Affiliation(s)
- Xi Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yakun Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Wanwan Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China.
| |
Collapse
|
3
|
Nie J, Zhu S, Zhang X, Wu D, Li X, Huang Q. Effects of starters on the quality of fermented fish (Zaoyu): Key microorganisms for coloring, softening, and improving flavor. Food Chem 2025; 465:142087. [PMID: 39566312 DOI: 10.1016/j.foodchem.2024.142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
This study aimed to improve the quality of fermented fish Zaoyu by inoculating different starters (Chuzhai starter, Aroma starter and Sweetness starter), and examining the role of key microorganisms. High-throughput sequencing showed the microbial composition of Aroma starter was similar to Sweetness starter, but both were different from Chuzhai starter. Compared to traditional fermentation, inoculated fermentation with Aroma starter and Sweetness starter strengthened the color of Zaoyu by Maillard reaction and softened the muscle by degrading muscle fibers, endomysium and epicardium. Additionally, the taste and odor of Zaoyu were obviously improved, because the proportion of sweet, umami and aroma compounds increased by 2.51 %, 7.09 %, and 22.94 %, respectively. Correlation analysis combined with metabolic functions showed key microorganisms, such as Trichococcus, Rhizopus, Saccharomycopsis, Saccharomyces, etc., improved the quality mainly by promoting sugar production and conversion, and protein degradation. Overall, Aroma starter and Sweetness starter were superior in improving the quality of Zaoyu.
Collapse
Affiliation(s)
- Jinggui Nie
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Sunting Zhu
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Xiao Zhang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Dan Wu
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Xuxu Li
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
4
|
Wang S, Jian C, Zhao L, Sun H, Liu Q, Cao R. Relationship between physicochemical properties, non-volatile substances, and microbial diversity during the processing of dry-cured Spanish mackerel. Food Res Int 2025; 200:115501. [PMID: 39779140 DOI: 10.1016/j.foodres.2024.115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased. The nitrite level of 1.52 mg/kg, meeting national safety standards. Additionally, there was a significant increase in hardness and chewiness. The synergistic effect of glutamic acid (Glu), alanine (Ala), and histidine (His) with inosine monophosphate (IMP), adenosine monophosphate (AMP) and guanosine monophosphate (GMP) enhanced the umami taste. Proteobacteria and Photobacteria are the main microorganisms of DCSM at the phylum and genus levels. Proteobacteria and Photobacteria are the main microorganisms of DCSM at the phylum and genus levels. Photobacterium, Moritella, and Pseudomonas were positively correlated with AMP, GMP, Ala, and Glu. And negatively correlated with nitrite and TBARS. These findings suggest that specific microorganisms positively influence the quality of DCSM through their metabolic activities. This research enhances our understanding of flavor formation mechanisms and provides critical insights for optimizing DCSM processing and quality control.
Collapse
Affiliation(s)
- Shanyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chong Jian
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Wu Y, Du Q, Dong R, Liao Y, Li C, Benjakul S, Zhang B. Role of the intestines on the muscle quality of Pacific white shrimp (Litopenaeus vannamei) during chilled storage: Physicochemical and label-free-based peptidomics analyses. Food Chem 2024; 460:140507. [PMID: 39068793 DOI: 10.1016/j.foodchem.2024.140507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
The effect of shrimp deveining on the quality of Pacific white shrimp muscle was investigated by analyzing the protein degradation during chilled storage via physicochemical and label-free peptidomics analyses. In this study, shrimp with intact intestines were in the control group (CS), while deveined shrimp (DS) were in the treatment group. The total viability count (TVC), total volatile base nitrogen (TVB-N) content, and trichloroacetic acid (TCA)-soluble peptide content in all of the shrimp groups gradually increased with prolonged chilled storage. However, in the later stages of chilled storage, the DS samples exhibited significantly lower TVB-N, total bacterial, and TCA-soluble peptide contents than the CS samples, indicating that deveining treatment effectively prolonged shrimp quality. The peptidomics analysis revealed varying degrees of protein hydrolysis in the DS and CS samples during chilled storage. A total of 396 differentially abundant peptides (DAPs) were identified in the DS compared with the CS, comprising 98 upregulated and 298 downregulated segments. This suggests that the removal of the intestine effectively inhibits protein hydrolysis. Gene ontology (GO) analysis suggested that the DAPs were mainly involved in catalytic activity, binding, and metabolic processes. The cluster of orthologous groups of protein (COG) analysis showed that the cytoskeleton dynamics of the muscle proteins underwent considerable alterations influenced by the shrimp's intestines during chilled storage.
Collapse
Affiliation(s)
- Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Ruyi Dong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China; Pisa Marine Graduate School, Zhejiang Ocean University, China.
| |
Collapse
|
6
|
Lv X, Wu W, Liu S, Ding L, Ren A, An L, Bai F, Li J, Li X, Yi S. Dynamic changes in the gel properties, microbial community, and volatile flavor profile of Spanish mackerel ( Scomberomorus niphonius) sausages inoculated with Lactiplantibacillus plantarum CY1-2. Food Funct 2024; 15:11060-11071. [PMID: 39422191 DOI: 10.1039/d4fo03841j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Spanish mackerel is an important economic fish species in China, but corruption undermines its overall economic value. Fermentation serves as a crucial technique for preserving perishable fish in developing countries. This study aimed to examine the dynamic changes in the gel properties, physicochemical properties, microbial diversity, and volatile flavor compounds (VFCs) of Spanish mackerel sausages inoculated with Lactiplantibacillus plantarum CY1-2 during fermentation. The correlation between key microorganisms and VFCs was explored using a two-way orthogonal partial least squares analysis. The results showed that the group inoculated with strain CY1-2 exhibited significant improvements compared with the control group after 40 h of fermentation. Specifically, gel strength increased by 207.7%, total free amino acids increased by 37.49%, DPPH and ABTS radical scavenging rates increased by 34.12% and 58.73%, and TVB-N levels decreased by 54.2%, respectively. In addition, using gas chromatography-mass spectrometry, 36 VFCs were detected in fermented sausages, including 9 aldehydes, 9 hydrocarbons, 7 alcohols, 4 acids, 2 ketones, and 5 esters. High-throughput sequencing demonstrated that the bacterial profiles were altered in sausages inoculated with strain CY1-2 during fermentation. Enhydrobacter dominated initially but was quickly replaced by Macrococcus after 8 h of fermentation, while Lactobacillus became the dominant genus after 40 h. Correlation analysis revealed that Lactobacillus and Staphylococcus played important roles in the production of VFCs in the fermented sausages. Notably, Lactobacillus was positively associated with 2-undecanone, pentadecane, and hexanal. This study confirmed that strain CY1-2 inoculation could enable the production of high-quality fermented fish sausages.
Collapse
Affiliation(s)
- Xinran Lv
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Wenyu Wu
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
- Xinjiang Hetian College, Hetian, Xinjiang Uygur Autonomous Region, 848000, China
| | - Shuilin Liu
- Dalian Customs Technology Center, Dalian, Liaoning Province, 116000, China
| | - Lili Ding
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Anqi Ren
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Le An
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Fengling Bai
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
7
|
Chen Q, Yang X, Liu S, Hong P, Zhou C, Zhong S, Zhu C, Chen J, Chen K. Changes in protein and volatile flavor compounds of low-salt wet-marinated fermented Golden Pomfret during processing. Food Chem 2024; 456:140029. [PMID: 38870820 DOI: 10.1016/j.foodchem.2024.140029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
In this experiment, the changes in protein hydrolysis, protein oxidation, and flavor of low-salt wet-marinated fermented golden pomfret were studied during processing. During processing, a decrease in sulfhydryl content (P < 0.05), a significant increase in protein surface hydrophobicity (P < 0.05), a significant increase in carbonyl content and TCA-soluble peptide (P < 0.05), an increase in TVB-N and amino acid nitrogen (P < 0.05), and a significant increase in the content of free amino acids (P < 0.05), indicating that proteins were gradually oxidized and degraded to small molecules and flavor precursors under the action of bacterial reduction pretreatment, deodorization, marination and fermentation processes, small molecules and aroma precursors was generated by gradual oxidative decomposition. In the course of processing, a total of 113 volatile flavor compounds were identified using GC-MS analysis, while OPLS-DA analysis and VIP value determination led to the identification of 10 characteristic flavor compounds. The results showed that an abundance of flavor compounds was generated during the processing, thereby imparting a more pronounced taste profile to the low-salt wet-marinated fermented golden carp. The results showed that a large number of flavor substances were generated during the processing to give a richer flavor to low-salt wet-marinated fermented golden pomfret that could provide data and theoretical support for the subsequent processing industry of golden pomfret.
Collapse
Affiliation(s)
- Qiuhan Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xuebo Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shouchun Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China; College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | | |
Collapse
|
8
|
Shui S, Chen Y, Yan H, Song J, Liu S, Benjakul S, Zhang B. Comparative analyses of physicochemical and volatile flavor characteristics in hooked, trawl-net, and radar-net hairtail ( Trichiurus haumela) muscles during long-term cryopreservation at -18°C. Food Sci Nutr 2024; 12:8159-8170. [PMID: 39479670 PMCID: PMC11521657 DOI: 10.1002/fsn3.4381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Chemical analysis showed that pH, b* values, myosin turbidity, carbonyl content, and surface hydrophobicity elevated in hooked, trawl-net, and radar-net hairtail (Trichiurus haumela, HH, TH, and RH) muscles with the prolonged cryopreservation time (-18℃, 120 d). In contrast, L*, a* values, textural properties, and myosin solubility existed decreasing trends. Microstructural results showed that freezing resulted in disordered myofibrils, decreased collagen fibers, widened myofibrillar space, and increased fragmentation in hairtail muscles. Furthermore, volatile flavor analysis suggested that aldehydes, ketones, alcohols, and amines were the key factors for the overall flavor formation in hairtails during cold storage. Pearson correlation coefficient analysis revealed that the color, texture, and protein oxidation had close correlations with VOCs. Among the three different kinds of hairtail, fresh RH fillets exhibited an attractive aroma with high economic value, long-term frozen TH muscle tissues were prone to deterioration in texture, microstructure, and flavor, and the HH samples presented stable quality characteristics and storage performance.
Collapse
Affiliation(s)
- Shanshan Shui
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Yu Chen
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Hongbo Yan
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| | - Jia Song
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Shucheng Liu
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐IndustryPrince of Songkla UniversityHat YaiThailand
| | - Bin Zhang
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
9
|
Li H, Li G, Bi Y, Liu S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods 2024; 13:2565. [PMID: 39200493 PMCID: PMC11353695 DOI: 10.3390/foods13162565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
The flavor profile of fermented fish products is influenced by the complex interplay of microbial and enzymatic actions on the raw materials. This review summarizes the various factors contributing to the unique taste and aroma of these traditional foods. Key ingredients include locally sourced fish species and a variety of spices and seasonings that enhance flavor while serving as cultural markers. Starter cultures also play a critical role in standardizing quality and accelerating fermentation. Flavor compounds in fermented fish are primarily derived from the metabolism of carbohydrates, lipids, and proteins, producing a diverse array of free amino acids, peptides, and volatile compounds such as aldehydes, ketones, alcohols, and esters. The fermentation process can be shortened by certain methods to reduce production time and costs, allowing for faster product turnover and increased profitability in the fermented fish market. Fermented fish products also show potent beneficial effects. This review highlights the importance of integrating traditional practices with modern scientific approaches. Future research directions to enhance the quality of fermented fish products are suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yunchen Bi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
10
|
Liu Q, Lei M, Lin J, Zhao W, Zeng X, Bai W. The roles of lipoxygenases and autoxidation during mackerel (Scomberomorus niphonius) dry-cured processing. Food Res Int 2023; 173:113309. [PMID: 37803620 DOI: 10.1016/j.foodres.2023.113309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/03/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The roles of enzymatic (Lipoxygenases, LOX) oxidation and autoxidation in the dry-cured processing of mackerel were investigated by adding exogenous substances in this study. Four groups, namely control, chlorogenic acid (inhibiting LOX activity), EDTA-2Na (inhibiting autoxidation), and exogenous LOX (adding eLOX), were assigned. The results showed that lipid oxidation of mackerel was reduced by inhibiting LOX activity and autoxidation, while adding eLOX promoted lipid oxidation. Inhibition of LOX activity and autoxidation suppressed fatty acid accumulation mainly in the air-drying and curing stage, respectively. The total contents of key flavors in the mackerel during dry-cured processing were decreased by inhibiting LOX activity and autoxidation, and the former inhibitory effect was stronger than autoxidation, while it was corresponding increased through adding eLOX, of particular in the later stage of air-drying. Collectively, LOX could promote the flavor formation of the mackerel in the dry-cured processing, which could be applied in the flavor adjustment of aquatic products or some similar fields.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
11
|
Yang D, Li C, Li L, Yang X, Chen S, Wu Y, Feng Y. Novel insight into the formation and inhibition mechanism of dipeptidyl peptidase-Ⅳ inhibitory peptides from fermented mandarin fish (Chouguiyu). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Huang L, Tang Y, Zheng J, Kan J, Wu Y, Wu Y, Awad S, Ibrahim A, Du M. Relationship between the Dynamics of Flavor Compounds and Microbial Succession in the Natural Fermentation of Zhalajiao, a Popular Traditional Chinese Fermented Chili Paste. Foods 2023; 12:3849. [PMID: 37893743 PMCID: PMC10606277 DOI: 10.3390/foods12203849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Zhalajiao, a traditional Chinese fermented food, is popular due to its unique flavor. Traditional Zhalajiao fermentation is closely related to flavor compounds production. However, the mechanisms underlying the formation of these crucial flavor components in Zhalajiao remain unclear. Here, we explored the dynamic changes in physical and chemical properties, microbial diversity, and flavor components of Zhalajiao at various fermentation times. In total, 6 organic acids, 17 amino acids, and 21 key volatile compounds were determined as flavor components. In Zhalajiao, Lactobacillus and Cyanobacterium were the main bacteria that were involved in the formation of crucial flavor compounds. Candida showed a significant correlation with 14 key flavor compounds during fermentation (p < 0.05) and was the main fungal genus associated with flavor formation in Zhalajiao. This research offers a theoretical foundation for the flavor regulation and quality assurance of Zhalajiao.
Collapse
Affiliation(s)
- Luhan Huang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yanyan Tang
- Chongqing Houjie Pharmaceutical Group Co., Ltd., Chongqing 404100, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yun Wu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yating Wu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Sameh Awad
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt
| | - Amel Ibrahim
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt
| | - Muying Du
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
13
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
14
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Liu J, Mai R, Liu P, Guo S, Yang J, Bai W. Flavor Formation in Dry-Cured Fish: Regulation by Microbial Communities and Endogenous Enzymes. Foods 2023; 12:3020. [PMID: 37628021 PMCID: PMC10453264 DOI: 10.3390/foods12163020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Dried salted fish is a traditional dry-cured fish that is sprinkled with salt before the curing process. With a unique flavor as well as diverse varieties, dry-cured fish is popular among consumers worldwide. The presence of various microbial communities during the curing process leads to numerous metabolic reactions, especially lipid oxidation and protein degradation, which influence the formation of flavor substances. However, during industrial curing, the quality of dry-cured fish is difficult to control, leading to the formation of products with diverse flavors. This review describes the curing process of dried salted fish, the key microorganisms involved in the curing process of typical dried salted fish products at home and abroad, and the correlation between biological metabolism and flavor formation and the underlying mechanism. This review also investigates the prospects of dried salted fish products, proposing methods for the analysis of improved curing processes and the mechanisms of dried salted fish. Through a comprehensive understanding of this review, modern production challenges can be addressed to achieve greater control of microbial growth in the system and improved product safety. In addition to advancing our understanding of the processes by which volatile flavor compounds are formed in conventional dry-cured fish products, we expect that this work will also offer a theoretical framework for enhancing their flavor in food processing.
Collapse
Affiliation(s)
- Jiayue Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Ruijie Mai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Pingru Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Siqi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Juan Yang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing 430062, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing 430062, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
16
|
Ren F, Liu M, Liu Y, Tian X, Jiang P, Tan B. Core microbes closely related with the nutrients and flavor of sweet fermented oats (whole grain food) from China. World J Microbiol Biotechnol 2023; 39:236. [PMID: 37369859 DOI: 10.1007/s11274-023-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Increased attention has been given to whole grain and plant-based foods due to health concerns. Sweet fermented oats (SFOs) are such traditional fermented food from China. However, reports on their microbiota and relations with the nutrients and flavor were scarcely few, hindering their wider application. The comprehensive microbial composition, metabolic compounds and their correlations of representative SFOs from northwestern China were firstly investigated. Firmicutes predominated the microbial communities, followed by Proteobacteria. Weissella, Bacillus and Lactobacillus were dominant bacterial genera, biomarkers and core bacteria as well. GC-MS (Gas Chromatography-Mass Spectrometer) identified the metabolic compounds, among which the categories fatty acids and carboxylic acids most abundant. Eighteen chemicals showed significant differences among the five SFOs, including ethyl octanoate, neryl acetate, L-sorbose, diglycerol, cellotetraose etc. Fatty acids, carboxylic acids, amino acids, peptides, oligosaccharides, and monosaccharides were the key substances responsible for the unique flavor and rich nutrients in SFOs. The core bacteria were closely related to chemical acids, esters, flavone and alcohol. Pediococcus showed a negative correlation with 2,3-butanediol. SFOs were made in the laboratory with the core bacterial strains, obtaining a high abundance of nutrient chemicals and sensory evaluation value. The research provided a foundation for the improvement, further application and industrialization of SFOs.
Collapse
Affiliation(s)
- Fei Ren
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China.
| | - Ming Liu
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China
| | - Yanxiang Liu
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China
| | - Xiaohong Tian
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China
| | - Ping Jiang
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, No.11 BaiWanZhuang Road, Beijing, 100037, China.
| |
Collapse
|
17
|
Shobirin Meor Hussin A, Mustafa S, Ming Gan H, Hashim AM, Hussain N. Bacterial community structure, predicted metabolic activities, and formation of volatile compounds attributed to Malaysian fish sauce flavour. Food Chem 2023; 426:136568. [PMID: 37437500 DOI: 10.1016/j.foodchem.2023.136568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
The fermentation of Malaysian fish sauce (budu) varies from one to twelve months depending on the producer, resulting in inconsistent quality. The microbiota, their predicted metabolic pathways and volatile metabolites profiles were determined at different stages of budu fermentation. Budu fermented for 1 and 3 months were characterized by the presence of Gram negative Enterobacterales, Gammaproteobacteria, and Fusobacteriaceae, which continuously decrease in abundance over fermentation time. The metabolic pathways prediction grouped 1- and 3- month budu in a cluster enriched with degradation reactions. 6-month budu were dominated by Halanaerobium and Staphylococcus, while the 12-month were dominated by Lentibacillus, Bacilli, and Halomonas. Biosynthesis-type predicted pathways involving protein and lipid derivatives were enriched in 6- and 12-month fermented budu, accumulating 2,6-dimethylpyrazine, methyl 2-ethyldecanoate, 2-phenylacetaldehyde, 3-methylbutanal, and 3-methylbutanoic acid. These compounds may indicate budu maturity and quality. This result may assist as a reference for quality control and fermentation monitoring.
Collapse
Affiliation(s)
- Anis Shobirin Meor Hussin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, 47500 Petaling Jaya, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhayati Hussain
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Xu D, Liu Y, Li X, Wang F, Huang Y, Ma X. Application and Effect of Pediococcus pentosaceus and Lactiplantibacillus plantarum as Starter Cultures on Bacterial Communities and Volatile Flavor Compounds of Zhayu, a Chinese Traditional Fermented Fish Product. Foods 2023; 12:foods12091768. [PMID: 37174306 PMCID: PMC10178518 DOI: 10.3390/foods12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Zhayu is a type of traditional fermented fish product in China that is made through the fermentation of salted fish with a mixture of cereals and spices. Inoculation fermentation was performed using Pediococcus pentosaceus P1, Lactiplantibacillus plantarum L1, and a mixture of two strains, which were isolated from cured fish in Hunan Province. Compared with the natural fermentation, inoculation with lactic acid bacteria (LAB) accelerated the degradation of myosin and actin in Zhayu, increased the trichloroacetic acid (TCA)-soluble peptide content by about 1.3-fold, reduced the colony counts of Enterobacteriaceae and Staphylococcus aureus by about 40%, and inhibited their lipid oxidation. In the texture profile analysis performed, higher levels of hardness and chewiness were observed in the inoculation groups. In this study, the bacterial community and volatile flavor compounds were detected through 16S high-throughput sequencing and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Inoculation with L. plantarum L1 reduced around 75% abundance of Klebsiella compared with the natural fermentation group, which was positively correlated with 2,3-Butanediol, resulting in a less pungent alcohol odor in Zhayu products. The abundances of 2-pentylfuran and 2-butyl-3-methylpyrazine were increased over threefold in the L1 group, which may give Zhayu its unique flavor and aroma.
Collapse
Affiliation(s)
- Dongmei Xu
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongle Liu
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xianghong Li
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Faxiang Wang
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yiqun Huang
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiayin Ma
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
19
|
Li Y, Leng W, Xue J, Yuan L, Liu H, Gao R. A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional Chinese shrimp paste. Food Res Int 2023; 166:112585. [PMID: 36914317 DOI: 10.1016/j.foodres.2023.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The fermentation process of traditional shrimp paste is closely associated with the production of flavor substances, but the formation mechanism of key aroma components is still unclear. In this study, a comprehensively flavor profile analysis of traditional fermented shrimp paste was carried out by E-nose and SPME-GC-MS. A total of 17 key volatile aroma components with OAV > 1 contributed greatly to the overall flavor formation of shrimp paste. In addition, high-throughput sequencing (HTS) analysis revealed that Tetragenococcus was the dominant genera in the whole fermentation process. Moreover, metabolomics analysis showed that the oxidation and degradation of lipids, protein, organic acids and amino acids produced a large number of flavor substances and intermediates, which laid the foundation for the Maillard reaction in term of generating the distinct aroma of the traditional shrimp paste. This work will provide theoretical support for the realization of flavor regulation and quality control in traditional fermented foods.
Collapse
Affiliation(s)
- Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Li Y, Li W, Li C, Li L, Yang D, Wang Y, Chen S, Wang D, Wu Y. Novel insight into flavor and quality formation in naturally fermented low-salt fish sauce based on microbial metabolism. Food Res Int 2023; 166:112586. [PMID: 36914319 DOI: 10.1016/j.foodres.2023.112586] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Low-salt fermentation is an effective way to shorten the fermentation time of fish sauce. In this study, the changes of microbial community, flavor, and quality during the natural fermentation of low-salt fish sauce were studied, followed by the elucidation of flavor and quality formation mechanisms based on microbial metabolism. The 16S rRNA gene high-throughput sequencing showed that both richness and evenness of microbial community were reduced during fermentation. The microbial genera, including Pseudomonas, Achromobacter, Stenotrophomonas, Rhodococcus, Brucella, and Tetragenococcus were more suitable for the fermentation environment, and obviously increased along with the fermentation. There were a total of 125 volatile substances identified by HS-SPME-GC-MS, of which 30 substances were selected as the characteristic volatile flavor substances, mainly including aldehydes, esters, and alcohols. Large amounts of free amino acids were produced in the low-salt fish sauce, especially umami and sweet amino acids, as well as high concentrations of biogenic amines. Correlation network constructed by the Pearson's correlation coefficient showed that most characteristic volatile flavor substances were significantly positively correlated with Stenotrophomonas, Achromobacter, Rhodococcus, Tetragenococcus, and Brucella. Stenotrophomonas and Tetragenococcus were significantly positively correlated with most free amino acids, especially umami and sweet amino acids. Pseudomonas and Stenotrophomonas were positively correlated with most biogenic amines, especially histamine, tyramine, putrescine, and cadaverine. Metabolism pathways suggested that the high concentrations of precursor amino acids contributed to the production of biogenic amines. This study indicates that the spoilage microorganisms and biogenic amines in the low-salt fish sauce need to be further controlled, and the strains belonging to Tetragenococcus can be isolated as potential microbial starters for the production of low-salt fish sauce.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenjing Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Daqiao Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
21
|
Xiao N, Xu H, Hu Y, Zhang Y, Guo Q, Shi W. Unraveling the microbial succession during the natural fermentation of grass carp and their correlation with volatile flavor formation. Food Res Int 2023; 165:112556. [PMID: 36869460 DOI: 10.1016/j.foodres.2023.112556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Complex microbial communities contribute significantly to the flavor formation of traditional fermented fish products. However, the relationship between microorganisms and flavor formation in traditional fermented grass carp products is still unclear. In this study, the diversity and succession of microbial communities and the variation of volatile compounds during natural fermentation of grass carp were analyzed using high-throughput sequencing of 16S rRNA and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. The core functional microorganism and key volatile compounds were identified, and their potential relationship was revealed using a correlation network model analysis. The microbial community analysis result showed that the microbial diversity during natural fermentation of grass carp decreased markedly with increasing fermentation time, and Lactiplantibacillus, Staphylococcus, and Enterobacter were the dominant genera in naturally fermented grass carp. HS-SPME-GC-MS analysis result showed that 45 volatile compounds were identified from fermented samples, among which 13 compounds (e.g., hexanal, heptanal, nonanal, decanal, 3-octanone, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octen-3-ol, 1-octanol, ethyl acetate, 3-methyl-1-butanol acetate, and 2-methoxy-4-vinylphenol) were identified as the key volatile compounds. Additionally, the correlation network model analysis result revealed that Lactiplantibacillus showed significantly positive correlations with most of the key volatile compounds, making an important contribution to the formation of volatile flavor in naturally fermented grass carp. This study may lead to an understanding of the role of core functional microorganisms in the formation of volatile flavor during the natural fermentation of grass carp and provide some theoretical guidance for the industrial production of high-quality fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yurui Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
22
|
Xing Y, Aweya JJ, Jin R, Lin R, Weng W, Zhang Y, Deng S, Yang S. Low-intensity ultrasound combines synergistically with Lacticaseibacillus paracasei fermentation to enhance chitin extraction from crab shells. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
23
|
Further Interpretation of the Volatile, Microbial Community and Edible Quality of Fresh Fermented Rice Noodles with Different Selected Strains. Foods 2023; 12:foods12050961. [PMID: 36900478 PMCID: PMC10000889 DOI: 10.3390/foods12050961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Understanding bacteria and yeasts can reduce unpredictable changes in fresh fermented rice noodles (FFRN). The effects of selected strains (Limosilactobacillus fermentum, Lactoplantibacillus plantarum, Lactococcus lactis and Saccharomyces cerevisiae) on the edible quality, microbial community, and volatile component of FFRN were studied. The results indicated that the fermentation time could be shortened to 12 h when Limosilactobacillus fermentum, Lactoplantibacillus plantarum, and Lactococcus lactis were added, whereas it still required approximately 42 h after adding Saccharomyces cerevisiae. Only a steady bacterial composition was provided by adding Limosilactobacillus fermentum, Lactoplantibacillus plantarum, and Lactococcus lactis, and only a steady fungal composition was provided by adding Saccharomyces cerevisiae. Therefore, these microbial results indicated that the selected single strains cannot improve the safety of FFRN. However, the cooking loss was decreased from 3.11 ± 0.11 to 2.66 ± 0.13 and the hardness of FFRN was increased from 1186 ± 178 to 1980 ± 207 when it was fermented with single strains. Finally, a total of 42 volatile components were determined by Gas chromatography-ion Mobility Spectrometry and 8 aldehydes, 2 ketones, and 1 alcohol were added during the entire fermentation process. The main volatile components were different during fermentation depending on the added strain, and there was the greatest variety of volatiles in the group with added Saccharomyces cerevisiae.
Collapse
|
24
|
Deciphering Microbial Diversity and Functional Codes of Traditional Fermented Whole Grain Tianpei from Typical Regions of China. FERMENTATION 2023. [DOI: 10.3390/fermentation9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whole grains are a crucial part of healthy and sustainable diets, attracting great attention. Tianpei is a popular traditional fermented whole grain food and beverage from China. It is suitable for all ages with lots of health benefits. However, its microflora and their functions, relations between microbial taxa and functions with Tianpei properties, were still little informed, limiting the fermentation optimization and quality improvement. In this study, the characteristics and distribution of the microbial flora taxa and their functions of the fermented whole grain Tianpei from typical regions of China were mainly deciphered through metagenomic methods. Phyla Mucoromycota, Firmicutes, Ascomycota, and Proteobacteria were the most abundant. Rhizopus, Limosilactobacillus, and Lactobacillus were the most abundant genera. Microbial COG functions carbohydrate transport and metabolism (mainly including fructose, galactose, glucose, L-arabinose, and mannose) and amino acid transport and metabolism (mainly including arginine, asparagine, glutamine, and glycine) kept a high abundance. PCA (Principal Component Analysis) illustrated that the microbial community and their functions of every Tianpei sample clustered individually based on the analysis, NR, related with the factors of raw material and sources. The microbial taxa, microbial functions, and the Tianpei properties were significantly correlated. Rhizopus, Limosilactobacillus, and Lactobacillus contributed most COG functions in Tianpei samples. Analysis of quorum sensing, pfam, secretion protein, probio, and cytochromes P450 were also annotated and found among Tianpei microbial communities. A sum of 105 probiotics were classified, mainly belonging to Lactobacillus, Leuconostoc, Acetobacter, Bacillus, Bifidobacterium, Pediococcus, etc. Tianpei samples made in the library with the most abundant and functional microbial key taxa strains—Rhizophus oryzae, Lactobacillus plantarum, and Limosilactobacillus fermentum—showed rich nutrient chemicals. The results indicate that microbial taxa and their functions could determine Tianpei properties. Thus, the quality /nutrients, flavor, and industrial production of Tianpei could be further investigated, promoted, and improved in the future based on the characteristics of these microbial taxa and their functions, such as the regulations of the main carbohydrate and AA. The study will also lay a foundation for the fermentative characteristics and condition technology of fermented whole grain food.
Collapse
|
25
|
Dai Y, Xu Z, Wang Z, Li X, Dong J, Xia X. Effects of fermentation temperature on bacterial community, physicochemical properties and volatile flavor in fermented soy whey and its coagulated tofu. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
ZHOU Q, ZHENG Z, LI L, GAO J, WU Y, YANG F, ZHONG K, GAO H. Effects of variety on quality and taste of spontaneous fermented dried radish. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
| | | | | | - Jia GAO
- Sichuan Academy of Agricultural Sciences,, China
| | | | - Feng YANG
- Sichuan Academy of Agricultural Sciences, China; Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, China
| | | | | |
Collapse
|
27
|
Correlation between dominant bacterial community and non-volatile organic compounds during the fermentation of shrimp sauces. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Relationship between microbial community and flavor profile during the fermentation of chopped red chili (Capsicum annuum L.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Liao H, Luo Y, Huang X, Xia X. Dynamics of quality attributes, flavor compounds, and microbial communities during multi-driven-levels chili fermentation: Interactions between the metabolome and microbiome. Food Chem 2022; 405:134936. [DOI: 10.1016/j.foodchem.2022.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
30
|
Han J, Lin X, Liang H, Zhang S, Zhu B, Ji C. Improving the safety and quality of Roucha using amine-degrading lactic acid bacteria starters. Food Res Int 2022; 161:111918. [DOI: 10.1016/j.foodres.2022.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
31
|
Elucidating the mechanism underlying volatile and non-volatile compound development related to microbial amino acid metabolism during golden pomfret (Trachinotus ovatus) fermentation. Food Res Int 2022; 162:112095. [DOI: 10.1016/j.foodres.2022.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
32
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Wang J, Aziz T, Bai R, Zhang X, Shahzad M, Sameeh MY, Khan AA, Dablool AS, Zhu Y. Dynamic change of bacterial diversity, metabolic pathways, and flavor during ripening of the Chinese fermented sausage. Front Microbiol 2022; 13:990606. [PMID: 36267187 PMCID: PMC9577601 DOI: 10.3389/fmicb.2022.990606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Chinese fermented sausage is a famous fermented meat product with a complex microbiota that has a potential impact on flavor and quality. In this study, Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3 were used as starter cultures to investigate the change in bacterial diversity, metabolic pathways, and flavor compounds during the ripening process of fermented sausages. High-throughput sequencing technology and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) were applied for characterizing the profiles of bacterial diversity, metabolic pathways, and flavor compounds in sausage samples on days 0, 6, and 12 during ripening. Results showed that Lactobacillus, Staphylococcus, Lactococcus, Leuconostoc, and Weissella were the most abundant bacterial genera found in the sausage samples during all stages of fermentation. Functional prediction reveals the abundance of 12 different metabolic pathways, the most important pathways are carbohydrate metabolism, nucleotide metabolism, lipid metabolism, and amino acid metabolism. A total of 63 volatile compounds were successfully identified in fermented sausage samples. Correlational analysis demonstrated that Staphylococcus and Leuconostoc were closely related to the formation of flavor compounds. Therefore, the present study may provide guidance for future use of microbiota to improve flavor, quality, and preservation of fermented sausages.
Collapse
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Tariq Aziz
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Ruxue Bai
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Muhammad Shahzad
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading, United Kingdom
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
34
|
Hu Y, Zhang L, Badar IH, Liu Q, Liu H, Chen Q, Kong B. Insights into the flavor perception and enhancement of sodium-reduced fermented foods: A review. Crit Rev Food Sci Nutr 2022; 64:2248-2262. [PMID: 36095069 DOI: 10.1080/10408398.2022.2121909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Salt (sodium chloride, NaCl) is a vital ingredient in fermented foods, which affects their safety, texture, and flavor characteristics. Recently, the demand for reduced-sodium fermented foods has increased, as consumers have become more health-conscious. However, reducing sodium content in fermented foods may negatively affect flavor perception, which is a critical quality attribute of fermented foods for both the food industry and consumers. This review summarizes the role of salt in the human body and foods and its role in the flavor perception of fermented foods. Current sodium reduction strategies used in the food industry mainly include the direct stealth reduction of NaCl, substituting NaCl with other chloride salts, and structure modification of NaCl. The odor-induced saltiness enhancement, application of starter cultures, flavor enhancers, and non-thermal processing technology are potential strategies for flavor compensation of sodium-reduced fermented foods. However, reducing sodium in fermented food is challenging due to its specific role in flavor perception (e.g., promoting saltiness and volatile compound release from food matrices, inhibiting bitterness, and changing microflora structure). Therefore, multiple challenges must be addressed in order to improve the flavor of low-sodium fermented foods. Future studies should thus focus on the combination of several strategies to compensate for the deficiencies in flavor resulting from sodium reduction.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
35
|
Quality Improvement of Zhayu, a Fermented Fish Product in China: Effects of Inoculated Fermentation with Three Kinds of Lactic Acid Bacteria. Foods 2022; 11:foods11182756. [PMID: 36140884 PMCID: PMC9498116 DOI: 10.3390/foods11182756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
To investigate the effects of inoculation fermentation on the quality of Zhayu (a traditional fermented fish product in China), different amounts of L. plantarum, P. acidilactici, and P. pentosaceus were inoculated into samples, and the safety, nutritional, textural, and flavor properties of the samples were evaluated. Fermentation with lactic acid bacteria (LAB) decreased pH values and total volatile basic nitrogen content. The addition of 108~109 cfu/100 g LAB significantly increased the content of crude fat and water-soluble proteins in Zhayu. The addition of L. plantarum and P. acidilactici increased the content of soluble solids in Zhayu. Moreover, fermentation with LAB made the products tender and softer, and the samples prepared with 109 cfu/100 g LAB presented better overall qualities. Additionally, Zhayu fermented with L. plantarum and P. acidilactici showed the strongest sourness, while the samples prepared with P. pentosaceus showed the strongest umami taste, consistent with the highest contents of Asp (25.1 mg/100 g) and Glu (67.8 mg/100 g). The addition of LAB decreased the relative contents of aliphatic aldehydes, (Z)-3-hexen-1-ol, and 1-octen-3-ol, reducing the earthy and fishy notes. However, LAB enhanced the contents of terpenoids, acids, esters, and S-containing compounds, increasing the sour, pleasant, and unique odors of Zhayu.
Collapse
|
36
|
Yang Z, Zhu X, Wen A, Qin L. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Sci Nutr 2022; 10:3143-3153. [PMID: 36171765 PMCID: PMC9469843 DOI: 10.1002/fsn3.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Although most probiotic products are milk based, lactose intolerance and vegetarianism inspired the idea of developing nondairy probiotic products. In this study, probiotic beverages were produced from four enzymatically hydrolyzed cereal substrates (coix seed, quinoa, millet, and brown rice) and fermented by Limosilactobacillus reuteri. Fermentation parameters, including pH, titratable acidity, viable count, organic acids, and volatile components were determined. Results showed that the pH values decreased and titratable acidity increased with the fermentation process (p < .05). Although the final pH in all samples was below 4.0, the growth of L. reuteri was not significantly inhibited by low pH. The number of viable bacteria (12.96 log CFU/ml) in coix seed substrate was significantly higher than that in other samples after the fermentation for 24 h (p < .05). Lactic acid and acetic acid were the main organic acids after fermentation and the highest in quinoa (lactic acid: 7.58 mg/ml; acetic acid: 2.23 mg/ml). The flavor analysis indicated that there were differences in the flavor components of different cereal beverages. Forty-nine volatile compounds were identified in four beverages, including acids, alcohols, aldehydes, ketones, and esters. The results of the electronic tongue showed that the umami taste of the fermented coix seed was better than that of other samples, displaying the more pleasant taste characteristics. In conclusion, it is feasible to prepare probiotic symbiotic cereal beverage with L. reuteri as starter culture. This study provides a reference for the development of nondairy probiotic products.
Collapse
Affiliation(s)
- Zhoujie Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Xiaoli Zhu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Anyan Wen
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Likang Qin
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| |
Collapse
|
37
|
Zhang L, Badar IH, Chen Q, Xia X, Liu Q, Kong B. Changes in flavor, heterocyclic aromatic amines, and quality characteristics of roasted chicken drumsticks at different processing stages. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Sun Y, Hua Q, Tian X, Xu Y, Gao P, Xia W. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Res Int 2022; 159:111631. [DOI: 10.1016/j.foodres.2022.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
|
39
|
Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Feng H, Timira V, Zhao J, Lin H, Wang H, Li Z. Insight into the Characterization of Volatile Compounds in Smoke-Flavored Sea Bass ( Lateolabrax maculatus) during Processing via HS-SPME-GC-MS and HS-GC-IMS. Foods 2022; 11:2614. [PMID: 36076799 PMCID: PMC9455667 DOI: 10.3390/foods11172614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to ascertain how the volatile compounds changed throughout various processing steps when producing a smoke-flavored sea bass (Lateolabrax maculatus). The volatile compounds in different production steps were characterized by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 85 compounds were identified, and 25 compounds that may be considered as potential key compounds were screened by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Results indicated that aldehydes were the major volatile compounds throughout the processing. The characteristic volatile compound in fresh samples was hexanol, and curing was an effective method to remove the fishy flavor. The concentration of volatile compounds was significantly higher in dried, smoked, and heated samples than in fresh and salted samples. Aldehydes accumulated because of the drying process, especially heptanal and hexanal. Smoke flavoring was an important stage in imparting smoked flavor, where phenols, furans and ketones were enriched, and heating leads to the breakdown of aldehydes and alcohols. This study will provide a theoretical basis for improving the quality of smoke-flavored sea bass products in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, China
| |
Collapse
|
41
|
Duppeti H, Kempaiah BB, Manjabhatta SN. Influence of processing conditions on the aroma profile of
Litopenaeus vannamei
by
SPME‐GC‐MS. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritha Duppeti
- Department of Meat and Marine Sciences CSIR‐Central Food Technological Research Institute Mysuru Karnataka India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Bettadaiah Bheemanakere Kempaiah
- Department of Plantation Products, Spices and Flavour Technology CSIR‐Central Food Technological Research Institute Mysuru Karnataka India
| | | |
Collapse
|
42
|
Nie S, Li L, Wu Y, Xiang H, Li C, Chen S, Zhao Y, Cen J, Yang S, Wang Y. Exploring the roles of microorganisms and metabolites in the fermentation of sea bass (Lateolabrax japonicas) based on high-throughput sequencing and untargeted metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Li C, Li W, Li L, Chen S, Wu Y, Qi B. Microbial community changes induced by a newly isolated salt-tolerant Tetragenococcus muriaticus improve the volatile flavor formation in low-salt fish sauce. Food Res Int 2022; 156:111153. [DOI: 10.1016/j.foodres.2022.111153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|
44
|
Wang A, Xiao T, Xi H, Qin W, He Y, Nie M, Chen Z, Wang L, Liu L, Wang F, Tong LT. Edible qualities, microbial compositions and volatile compounds in fresh fermented rice noodles fermented with different starter cultures. Food Res Int 2022; 156:111184. [DOI: 10.1016/j.foodres.2022.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
|
45
|
Li XM, Deng JY, Wu Y, Nie W, Wang ZM, Zhou H, Xu BC. Insight into the correlation between microbial diversity and flavor profiles of traditional dry-cured duck from the metabolomic perspective. Food Res Int 2022; 156:111349. [DOI: 10.1016/j.foodres.2022.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
|
46
|
Pang C, Li Y, Yu R, Wang J, Li X, Chen Y, Yu L, Luo H. Changes in bacterial community structure and quality characteristics during fermentation of stinky variegated carp (
Aristichthys nobilis
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunxia Pang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| | - Yi Li
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| | - Renying Yu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| | - Junhao Wang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| | - Xuerui Li
- Agro‐products Processing Research Institute Yunnan Academy of Agricultural Sciences Kunming Yunnan 650221 People’s Republic of China
| | - Yuru Chen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| | - Lijuan Yu
- Agro‐products Processing Research Institute Yunnan Academy of Agricultural Sciences Kunming Yunnan 650221 People’s Republic of China
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 People’s Republic of China
| |
Collapse
|
47
|
Wang J, Hou J, Zhang X, Hu J, Yu Z, Zhu Y. Improving the Flavor of Fermented Sausage by Increasing Its Bacterial Quality via Inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods 2022; 11:foods11050736. [PMID: 35267369 PMCID: PMC8909713 DOI: 10.3390/foods11050736] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
This research aims to investigate the effects of Staphylococcus xylosus YCC3 (Sx YCC3) and Lactobacillus plantarum MSZ2 (Lp MSZ2) on lipid hydrolysis and oxidation, the bacterial community’s composition, and the volatile flavor compounds in fermented sausage. The bacterial community was examined by plate counting and high-throughput sequencing. Differential flavor compounds in non-inoculated and inoculated sausages were identified by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The results showed that the free fatty acid (FFA) content was increased after inoculating with Sx YCC3 or Lp MSZ2. The pH, peroxide value (POV), thiobarbituric acid reactive substances (TBARS) value, lipoxygenase activity, and the counts of Enterobacteriaceae were lower in the inoculated sausage than in the non-inoculated sausage. The bacterial inoculation enhanced the competitiveness of Staphylococcus and Lactobacillus and restricted the growth of unwanted bacteria. The OPLS-DA revealed that (Z)-hept-2-enal, (E)-2-octenal, 1-nonanal, octanal, and 1-octen-3-ol were common differential flavor compounds that were found in the inoculated sausages but were not found in the non-inoculated sausages. A positive correlation was observed between the differential flavor compounds and the relative abundance of Staphylococcus or Lactobacillus, or the FFA content. Our results indicated that inoculation with Sx YCC3 or Lp MSZ2 can improve fermented sausages’ flavor by enhancing their bacterial quality and increasing their FFA content.
Collapse
|
48
|
Kumar Verma D, Thyab Gddoa Al-Sahlany S, Kareem Niamah A, Thakur M, Shah N, Singh S, Baranwal D, Patel AR, Lara Utama G, Noe Aguilar C. Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi J Biol Sci 2022; 29:1565-1576. [PMID: 35280596 PMCID: PMC8913424 DOI: 10.1016/j.sjbs.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Aroma and flavour represent the key components of food that improves the organoleptic characteristics of food and enhances the acceptability of food to consumers. Commercial manufacturing of aromatic and flavouring compounds is from the industry's microbial source, but since time immemorial, its concept has been behind human practices. The interest in microbial flavour compounds has developed in the past several decades because of its sustainable way to supply natural additives for the food processing sector. There are also numerous health benefits from microbial bioprocess products, ranging from antibiotics to fermented functional foods. This review discusses recent developments and advancements in many microbial aromatic and flavouring compounds, their biosynthesis and production by diverse types of microorganisms, their use in the food industry, and a brief overview of their health benefits for customers.
Collapse
Affiliation(s)
- Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City, Iraq
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India
| | - Deepika Baranwal
- Department of Home Science, Arya Mahila PG College, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry. Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, México
| |
Collapse
|
49
|
Low-Content Pre-Emulsified Safflower Seed Oil Enhances the Quality and Flavor of the Nemipterus Virgatus Surimi Gel. Gels 2022; 8:gels8020106. [PMID: 35200487 PMCID: PMC8871502 DOI: 10.3390/gels8020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Surimi-based products occupy an important position in the aquatic product processing industry. To enhance the quality and flavor of surimi-based products, the effects of pre-emulsified safflower seed oil on the texture, water-holding capacity (WHC), microstructure, and flavor of Nemipterus virgatus surimi gel was evaluated. The texture and whiteness of the gel were improved, and the WHC increased (p < 0.05) as the content of safflower seed oil increased up to 2 mL per 100 g surimi. Furthermore, the drops of pre-emulsified safflower seed oils with an average diameter of less than 0.10 μm were evenly distributed in gel matrix. Microstructure and infrared spectroscopy analyses indicated that low-content pre-emulsified safflower seed oil acted as filler particles to occupy void spaces, resulting in gel exhibiting a dense network structure. Volatile analysis showed the gel containing pre-emulsified oil enriched volatile compounds, mainly resulting from the oxidation and decomposition of oils by the activation of lipoxygenase, which synergistically contributes to unique flavors of gel. Consequently, low-content pre-emulsified safflower seed oil can used to enhance the quality and flavor of N. virgatus surimi-based products. These findings are especially relevant to the current growing interest in low-fat and high-protein diets.
Collapse
|
50
|
Analysis of the relationship between microorganisms and flavour development in dry-cured grass carp by high-throughput sequencing, volatile flavour analysis and metabolomics. Food Chem 2022; 368:130889. [PMID: 34438175 DOI: 10.1016/j.foodchem.2021.130889] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023]
Abstract
Complex microbial community plays an important role for flavor formation in traditional dry-cured grass carp. To investigate the correlation between microorganisms and flavour development, the bacterial diversity and flavour quality of dry-cured fish at different stages of fermentation were analysed using high-throughput sequencing, volatile flavour analysis and metabolomics. Cobetia, Staphylococcus and Ralstonia were the dominant genera in dry-cured fish, with relative abundances of 37.78%, 34.46% and 3.2%, respectively. The flavour of dry-cured fish samples varied as the abundance of aldehydes, alcohols, small peptides, FAAs and carboxylic acids showed a great increase during fermentation. Moreover, there were significant correlations (P < 0.05) between specific microorganisms and volatile indicators, as well as flavour metabolites. Staphylococcus, as the dominant bacterial genus, is involved in the mechanism of flavour formation in dry-cured fish during fermentation. This information is useful for elucidating the mechanism of flavour formation in dry-cured fish.
Collapse
|