1
|
Aliabbasi N, Mehrabi S, Kheirandish M, Gashtasbi S, Mokhtarian M, Hosseini-Isfahani M, Vakilinezami A, Vakilinezami P, Mostaghim T, Rezaeinia H. The novel nano-electrospray delivery of curcumin via ultrasound assisted Balangu (Lallemantia royleana) hydrocolloid-chickpea protein interaction. Food Chem 2025; 484:144388. [PMID: 40267673 DOI: 10.1016/j.foodchem.2025.144388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This research examines the development of complexes between chickpea protein isolate and Balangu seed gum using ultrasound (200 W, 350 W, 500 W, 650 W, and 800 W) to curcumin delivery by electrospray. Higher ultrasound powers (650 W and 800 W) enhanced the formation of complexes, as confirmed by FTIR and XRD. Complexes treated at 650 W demonstrated optimal solution properties for electrospraying, featuring the lowest surface tension of 31.79 mN/m and the highest zeta potential an electrical conductivity of -68.46 mV, and 1896 μS/cm, respectively. The electrospray effectively produced nanoparticles from the 650 W-treated complex solution, achieving a high curcumin encapsulation efficiency (93.67 ± 1.22 %). Loading curcumin into the complex solution altered the nanoparticles' morphology, resulting in more uniform particles. In the small intestine simulation, the hydrolysis of complex particles led to a significant curcumin release of 100 % within 480 min. The best-fitting model for curcumin release from complexes was the Peppas-Sahlin.
Collapse
Affiliation(s)
- Neda Aliabbasi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Shima Mehrabi
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kheirandish
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Gashtasbi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Morassa Mokhtarian
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Hosseini-Isfahani
- Department of Food Science and Technology, Islamic Azad University, Safadasht Branch, Tehran, Iran
| | - Amir Vakilinezami
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran
| | | | - Toktam Mostaghim
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Rezaeinia
- Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran; Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, P.O. Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang Z, Wu Y, Zhang C, Huang F. Exploring how papaya juice improves meat tenderness and digestive characteristics in Wenchang chickens. Poult Sci 2025; 104:104621. [PMID: 39647357 PMCID: PMC11667023 DOI: 10.1016/j.psj.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024] Open
Abstract
Wenchang chicken meat, used as the primary ingredient, was combined with papaya juice in different proportions for pickling and stewing. The objective of this study was to examine the effects of papain in papaya juice on the tenderness, structure and digestive characteristics of chicken meat. Compared with that in the control group, the tenderness of Wenchang chicken meat decreased and the protein solubility increased with the increase in papaya juice concentration. Scanning electron microscopy (SEM) showed that the arrangement between muscle bundles was from dense to sparse and the surface pores of muscle bundles increased. The results showed that adding papaya juice with a 50% dilution concentration provided the best outcomes in terms of tenderness, structure and digestive characteristics of chicken. Papain in papaya juice interacts with chicken protein, further enhancing the tenderness. The addition of papaya can further improve the tenderness and digestibility of chicken meat.
Collapse
Affiliation(s)
- Zihan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yucan Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
He FY, Zhu XT, Liu H, Chong YQ, Wu ZP, Ye LJ, Chen YW, Fu JJ. Structural and sensory characteristics of ultrasonic assisted wet-heating Maillard reaction products of Giant salamander protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9462-9471. [PMID: 39056251 DOI: 10.1002/jsfa.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Xing-Tong Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yun-Qing Chong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Zhi-Ping Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, China
| | - Lu-Jun Ye
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Santos MMF, Grisi CVB, Madruga MS, Silva FAP. Nutritional and technological potential of chicken feathers for the food industry. Br Poult Sci 2024; 65:722-729. [PMID: 38995227 DOI: 10.1080/00071668.2024.2365859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/10/2024] [Indexed: 07/13/2024]
Abstract
1. The production of chicken meat has resulted in high volumes of byproducts, such as feathers, bones, skin, viscera, and feet. The structure of feathers is one of the most complex among vertebrates, with a central axis and lateral filamentary structures, providing rigidity, lightness, and flexibility. Chicken feathers are composed of proteins, lipids, and water, with the highest protein content, especially keratin, which is responsible for the material's rigidity.2. Industries still make little use of feathers, which are generally intended for the production of flour or organic fertilisers. These are low added value products, and discarded feathers can harm the environment.3. Keratin extraction techniques and resulting protein hydrolysates have been studied in chicken feathers. Acid, alkaline or enzymatic hydrolysis is the most commonly used method for obtaining molecules with functional properties such as antioxidant, antimicrobial, antihypertensive and antidiabetic activity.4. The development of keratin-based biodegradable films represents an area of interest for reducing the economic and environmental impacts caused by inappropriate disposal of feathers.
Collapse
Affiliation(s)
- M M F Santos
- Technology Department, State University of Feira de Santana, Feira de Santana, Brazil
- Postgraduate Program in Agrifood Technology, Federal University of Paraiba, Bananeiras, Brazil
| | - C V B Grisi
- Postgraduate Program in Agrifood Technology, Federal University of Paraiba, Bananeiras, Brazil
| | - M S Madruga
- Postgraduate Program in Food Science and Technology, Federal University of Paraiba, Campus Universitario I, João Pessoa, Brazil
| | - F A P Silva
- Postgraduate Program in Agrifood Technology, Federal University of Paraiba, Bananeiras, Brazil
- Postgraduate Program in Food Science and Technology, Federal University of Paraiba, Campus Universitario I, João Pessoa, Brazil
| |
Collapse
|
5
|
López-Martínez MI, Toldrá F, Mora L. Comparative analysis of different pretreatments and hydrolysis conditions for the generation of taste-related substances in pork liver hydrolyzates. Food Chem 2024; 467:142178. [PMID: 39631351 DOI: 10.1016/j.foodchem.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
In recent years, the increase in meat industry production supposes a negative impact in the environment. Revaluation of meat by-products is essential to mitigate this impact and enzymatic hydrolysis of proteins, aided by pretreatment techniques like ultrasound, offers a promising approach to produce hydrolyzates with potential as functional ingredients. This study evaluates optimal conditions for enzymatic hydrolysis of pork liver, focusing on ultrasound and thermal pretreatment, and optimizing enzyme selection to enhance the production of bioactive peptides and taste-related compounds. Results demonstrate that probe ultrasound pretreatment significantly increases umami amino acids and the release of taste-related amino acids in cooked Alcalase hydrolyzates. This effect is further amplified in raw liver Alcalase hydrolyzates. Additionally, ultrasound pretreatment of Flavourzyme hydrolyzates improves both the release of taste-related amino acids and antioxidant activity. Overall, pork liver shows great potential as a raw material for producing hydrolyzates with potential applications as functional ingredients.
Collapse
Affiliation(s)
- Manuel Ignacio López-Martínez
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
6
|
Duan Y, Yang X, Deng D, Zhang L, Ma X, He L, Zhu X, Zhang X. Effects of ultrasonic waves of different powers on the physicochemical properties, functional characteristics, and ultrastructure of bovine liver peptides. ULTRASONICS SONOCHEMISTRY 2024; 110:107031. [PMID: 39173448 PMCID: PMC11381874 DOI: 10.1016/j.ultsonch.2024.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
In recent years, ultrasound has emerged as a widely used technology for modifying proteins/peptides. In this study, we focused on the intrinsic mechanism of ultrasound-induced modification of bovine liver peptides, which were treated with ultrasound power of 0, 100, 200, 300, 400, and 500 W, and their physicochemical and functional properties, as well as ultrastructures, were investigated. The results show that ultrasound mainly affects hydrogen bonding and hydrophobic interactions to change the conformation of proteins and unfolds proteins through a cavitation effect, leading to an increase in biological activity. Fourier infrared spectroscopy showed that ultrasound inhibited the formation of hydrogen bonds and reduced intermolecular cross-linking. Molecular weight distribution showed that the antioxidant components of bovine liver polypeptides were mainly concentrated in fractions of 500-1,000 Da. Maximum values of ABTS (82.66 %), DPPH (76.02 %), chelated iron (62.18 %), and reducing power (1.2447) were obtained by treating bovine liver polypeptides with 500 W ultrasound. Combined with the scanning electron microscopy results, with the intervention of ultrasound, the impact force generated by ultrasonication may lead to the loosening of the protein structure, which further promotes the release of antioxidant peptides, and these findings provide new insights into the application of ultrasound in the release of antioxidant peptides from bovine liver.
Collapse
Affiliation(s)
- Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Deng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaopeng Zhu
- Gansu Wanhe Grass and Livestock Industry Technology Development Co., Ltd., Lanzhou 730070, China
| | - Xinjun Zhang
- Ningxia Xiahua Meat Food Co., Ltd., Zhongwei 75500, China
| |
Collapse
|
7
|
Guo Y, Cao Z, Weng K, Zhang Y, Zhang Y, Chen G, Xu Q. Effect of chilled storage period on the volatile organic compounds and bacterial community in goose meat. Food Chem X 2024; 23:101685. [PMID: 39220418 PMCID: PMC11365293 DOI: 10.1016/j.fochx.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Storage time is considered to be one of the most important factors affecting the obnoxious odor and microbial spoilage of fresh meat. In this study, volatile organic compounds (VOCs) and bacterial community structure of chilled goose meat during storage were investigated. The results showed that numerous VOCs were produced during the fresh goose meat storage, including aldehydes (nonanal, (E)-2-octenal, hexanal, tetradecanal), alcohol (1-octen-3-ol), furan (2-pentylfuran), and carboxylic acids (methyl diethyldithiocarbamate), which might be a breakdown product during spoilage. In addition, there were slight fluctuations in fatty acid profiles and amino acid contents. Furthermore, bacterial community diversity decreased with prolonged storage. Also, Pseudomonas and Acinetobacter were the dominant spoilage bacteria contributing to nonanal and methyl diethyldithiocarbamate generation. Taken together, these data provide insights into the characterization of VOCs and the bacterial community of chilled goose meat, which will help to further control the microbial quality of chilled meat.
Collapse
Affiliation(s)
- Yujiao Guo
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Wei Y, Xie L, Muhoza B, Liu Q, Song S. Generation of Olfactory Compounds in Cat Food Attractants: Chicken Liver-Derived Protein Hydrolysates and Their Contribution to Enhancing Palatability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15906-15919. [PMID: 38959426 DOI: 10.1021/acs.jafc.4c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present study investigated the impact of four chicken liver protein hydrolysate-based cat food attractants on palatability. Aroma compounds were analyzed in these attractants, which were subsequently sprayed onto four different types of cat foods. Results revealed that CF4 exhibited the highest intake ratio and the first choice ratio, followed by CF2 sample. Orthogonal partial least-squares discriminant analysis (OPLS-DA) demonstrated significant differences among 50 volatile compounds identified from the four cat foods. Using variable importance in projection (VIP) values, we selected 17 key flavor compounds responsible for distinguishing between the four cat foods. Peptides with a molecular mass <180 Da showed correlation with nonanoic acid and cedrol, while those >3000 Da correlated with hexanoic acid ethyl ester. Regression coefficients (RCs) calculated from partial least-squares regression (PLSR) results showed positive correlations between compound content and palatability for six compounds, whereas negative correlations were observed for ten compounds. Validation experiments confirmed that nonanal, 2-propylpyridine, and 3-octen-2-one enhanced palatability and correlated with peptides ranging from 180 to 500 Da; conversely, nonanoic acid ethyl ester and 3-methyl-pentanoic acid reduced palatability and correlated with peptides ranging from 1000 to 3000 Da.
Collapse
Affiliation(s)
- Yuyan Wei
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ling Xie
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
9
|
Li K, Wang J, Zhao P, Julian McClements D, Liu X, Liu F. Effect of ultrasound-assisted Maillard reaction on glycosylation of goat whey protein: Structure and functional properties. Food Chem 2024; 441:138292. [PMID: 38183717 DOI: 10.1016/j.foodchem.2023.138292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Goat whey protein (GWP) has a rich amino acid profile and good techno-functional attributes but still has limited functional performance for certain applications. This study introduces an innovative ultrasound-assisted Maillard reaction to enhance GWP's functional properties by conjugating it with either gum Arabic (GA) or citrus pectin (CP). Sonication accelerated the Maillard reaction, and the glycosylation of GWP was significantly enhanced after optimization of the conjugation conditions. Gel electrophoresis examination verified the creation of GWP-polysaccharide conjugates, while scanning electron microscopy analysis revealed structural modifications caused by polysaccharide grafting and sonication. The use of ultrasound in the Maillard reaction notably enhanced the solubility, foaming capacity, and emulsifying attributes of the GWPs. Among the conjugates, the GWP-GA ones exhibited the best functional properties. Our findings suggest that this approach can notably improve the functional attributes of GWPs, thus broadening their potential uses in the food sector and beyond.
Collapse
Affiliation(s)
- Kun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiangyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pengfei Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
10
|
Jia R, Yang Y, Liao G, Yang Y, Gu D, Wang G. Effect of Stewing Time on the Small Molecular Metabolites, Free Fatty Acids, and Volatile Flavor Compounds in Chicken Broth. Food Sci Anim Resour 2024; 44:651-661. [PMID: 38765279 PMCID: PMC11097019 DOI: 10.5851/kosfa.2024.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 05/21/2024] Open
Abstract
Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yucai Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Liu Y, Guo X, Liu T, Fan X, Yu X, Zhang J. Study on the structural characteristics and emulsifying properties of chickpea protein isolate-citrus pectin conjugates prepared by Maillard reaction. Int J Biol Macromol 2024; 264:130606. [PMID: 38447830 DOI: 10.1016/j.ijbiomac.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 μm to 1.49 μm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
12
|
Zhang J, Tu Z, Hu Z, Hu Y, Wang H. Efficient preparation of oyster hydrolysate with aroma and umami coexistence derived from ultrasonic pretreatment assisted enzymatic hydrolysis. Food Chem 2024; 437:137881. [PMID: 37931449 DOI: 10.1016/j.foodchem.2023.137881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
In the study, an efficient protease Neutrase®-Flavourzyme® (NF) was screened to prepare the umami-aroma flavor oyster hydrolysate. The effect of protease and ultrasonic pretreatment (UP) assisted by the optimal protease on the flavor substances was investigated. The results demonstrated that the optimal UP-NF (450 W) showed a higher amino acid nitrogen content of 0.34 g/100 mL compared to the NF, and 19 major aroma compounds including octanal, decanal, nonanal, benzaldehyde, 2-undecanone, and 1-octen-3-ol were obtained. Additionally, the free amino acid and fatty acid spectrum indicated that the formation of flavor compounds was primarily due to the oxidation of linoleic and linolenic acids and the degradation of amino acids. Furthermore, taste analysis proved that increased umami and saltiness resulted from the accelerated release of Glu, Asp and 5'-IMP. Overall, UP-NF proved to be an effective method for producing umami-aroma flavor, facilitating further processing of oyster products for the application.
Collapse
Affiliation(s)
- Junwei Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Zizi Hu
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
13
|
Xia Q, Zhou C, Pan D, Cao J. Food off-odor generation, characterization and recent advances in novel mitigation strategies. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:113-134. [PMID: 38460997 DOI: 10.1016/bs.afnr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
The pronounced perception of off-odors poses a prevalent issue across various categories of food ingredients and processed products, significantly exerting negative effects on the overall quality, processability, and consumer acceptability of both food items and raw materials. Conventional methods such as brining, marinating, and baking, are the main approaches to remove the fishy odor. Although these methods have shown notable efficacy, there are simultaneously inherent drawbacks that ultimately diminish the processability of raw materials, encompassing alterations in the original flavor profiles, the potential generation of harmful substances, restricted application scopes, and the promotion of excessive protein/lipid oxidation. In response to these challenges, recent endeavors have sought to explore innovative deodorization techniques, including emerging physical processing approaches, the development of high-efficiency adsorbent material, biological fermentation methods, and ozone water rinsing. However, the specific mechanisms underpinning the efficacy of these deodorization techniques remain not fully elucidated. This chapter covers the composition of major odor-causing substances in food, the methodologies for their detection, the mechanisms governing their formation, and the ongoing development of deodorization techniques associated with the comparison of their advantages, disadvantages, and application mechanisms. The objective of this chapter is to furnish a theoretical framework for enhancing deodorization efficiency through fostering the development of suitable deodorization technologies in the future.
Collapse
Affiliation(s)
- Qiang Xia
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Changyu Zhou
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, P.R. China.
| |
Collapse
|
14
|
Zhang Y, Yao Y, Zhou T, Zhang F, Xia X, Yu J, Song S, Hayat K, Zhang X, Ho CT. Light-Colored Maillard Peptides: Formation from Reduced Fluorescent Precursors of Browning and Enhancement of Saltiness Perception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20251-20259. [PMID: 38060299 DOI: 10.1021/acs.jafc.3c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The browning formation and taste enhancement of peptides derived from soybean, peanut, and corn were studied in the light-colored Maillard reaction compared with the deep-colored reaction. The fluorescent compounds, as the browning precursors, were accumulated during the early Maillard reaction of peptides and subsequently degraded into dark substances, which resulted in a higher browning degree of deep-colored Maillard peptides (MPs), especially for the MPs derived from corn peptide. However, the addition of l-cysteine in light-colored Maillard reaction reduced the formation of deoxyosones and short-chain reactive α-dicarbonyls, thereby weakening the generation of fluorescent compounds and inhibited the browning of MPs. Synchronously, the peptides were thermally degraded into small peptides and amino acids, which were consumed less during light-colored thermal reaction due to its shorter reaction time at high temperature compared with deep-colored ones, thus contributing to a stronger saltiness perception of light-colored MPs than deep-colored MPs. Besides, the Maillard reaction products derived from soybean and peanut peptides possessed an obvious "kokumi" taste, making them suitable for enhancing the soup flavors.
Collapse
Affiliation(s)
- Yanqun Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Qiang Wang Flavouring Food Co., Ltd., Anhui Province Key Laboratory of Functional Compound Seasoning, No. 1 Shengli Road, Jieshou 236500, Anhui, P.R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Chen T, Wei CK, Li T, Zhang HL, Ni ZJ, Khan MR, Wei ZJ. Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal. Foods 2023; 12:4346. [PMID: 38231852 DOI: 10.3390/foods12234346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Lycium barbarum seed meal contains a variety of bioactive compounds, but the use of L. barbarum seed meal in the food industry is rare. This study aimed to evaluate the effect of reducing sugars on the structural and flavor properties of the Maillard reaction products (MRPs) of the Lycium barbarum seed meal hydrolysate (LSH). The results showed that the flavors and tastes of the MRPs were affected by reducing sugars. In comparison to oligosaccharides, monosaccharides were more suitable for the development of MRPs with good sensory qualities. The structural characteristics of L. barbarum seed meal precursor MRPs were also affected by reducing sugars. The MRPs produced with the participation of monosaccharides had higher ultraviolet absorption and browning than the MRPs produced with oligosaccharides. The molecular weights of the MRPs were found to be 128-500 Da and 500-1000 Da. Compared to the MRPs made from other sugars, xylose-meridian products (X-MRPs) had a stronger meaty flavor. The mellowness and continuity of the MRPs made from monosaccharides were superior to those made from oligosaccharides. The MRPs formed by L. barbarum seed meal exhibited the characteristics of umami and meat flavor. MRPs with better flavors may be used to develop new types of seasoning salts.
Collapse
Affiliation(s)
- Tao Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tong Li
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui-Lin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
16
|
Li H, Zhang Y, Jiang Y, Li JX, Li C, Zhao Y, Li C, Jie RQD, Zulewska J, Li H, Yu J. Application of tea polyphenols as additives in brown fermented milk: Potential analysis of mitigating Maillard reaction products. J Dairy Sci 2023; 106:6731-6740. [PMID: 37210347 DOI: 10.3168/jds.2022-22973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
Brown fermented milk (BFM) is favored by consumers in the dairy market for its unique burnt flavor and brown color. However, Maillard reaction products (MRP) from high-temperature baking are also noteworthy. In this study, tea polyphenols (TP) were initially developed as potential inhibitors of MRP formation in BFM. The results showed that the flavor profile of BFM did not change after adding 0.08% (wt/wt) of TP, and its inhibition rates on 5-hydroxymethyl-2-furaldehyde (5-HMF), glyoxal (GO), methylglyoxal (MGO), Nε-carboxymethyl lysine (CML), and Nε-carboxyethyl lysine (CEL) were 60.8%, 27.12%, 23.44%, 57.7%, and 31.28%, respectively. After 21 d of storage, the levels of 5-HMF, GO, MGO, CML, and CEL in BFM with TP were 46.3%, 9.7%, 20.6%, 5.2%, and 24.7% lower than the control group, respectively. Moreover, a smaller change occurred in their color and the browning index was lower than that of the control group. The significance of this study was to develop TP as additives to inhibit the production of MRP in brown fermented yogurt without changing color and flavors, thereby making dairy products safer for consumers.
Collapse
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuelu Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jia Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chen Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunshuang Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ren Qing Duo Jie
- Qinghai Qilong Trading Co. Ltd., Henan Qilong Ranch, Qinghai, 811500, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
17
|
Gao C, Jia J, Yang Y, Ge S, Song X, Yu J, Wu Q. Structural change and functional improvement of wheat germ protein promoted by extrusion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Hsu C, Utterback PL, Parsons CM, Marx F, Guldenpfennig R, de Godoy MRC. Standardized amino acid digestibility and protein quality in extruded canine diets containing hydrolyzed protein using a precision-fed rooster assay. J Anim Sci 2023; 101:skad289. [PMID: 37638674 PMCID: PMC10503644 DOI: 10.1093/jas/skad289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Protein hydrolysate has become a choice of alternative protein source in canine diets as it showed greater digestibility, lower allergenic responses, and various functional properties when compared with intact proteins. The objective of the study was to determine the effect of hydrolyzed protein inclusion on amino acid digestibility and protein quality in extruded canine diets when compared with a traditional protein source for adult dogs. Five treatment diets were formulated to have similar compositions except for the main protein source. The control diet was formulated with chicken meal (CM) as the primary protein source. Test hydrolyzed proteins, chicken liver and heart hydrolysate (CLH) and chicken hydrolysate (CH) were used to partially or completely substitute CM. The diets were: CONd: CM (30%) diet; 5%CLHd: 5% CLH with 25% CM diet; CLHd: CLH (30%) diet; 5%CHd: 5% CH with 25% CM diet; CHd: CH (30%) diet. A precision-fed rooster assay was used to determine standardized amino acid digestibility for the ingredients and diets. In addition, Digestible Indispensable Amino Acid Score (DIAAS)-like values were calculated for the protein ingredients. All protein ingredients had higher than 80% of digestibility for all indispensable amino acids with no difference among sources (P > 0.05). From the DIAAS-like values referencing AAFCO nutrient profile for adult dogs, CLH and CH did not have any limiting amino acid; on the other hand, CM has a lower DIAAS-like value (93.3%) than CLH and CH (P < 0.05) with tryptophan being the first-limiting amino acid. The DIAAS-like values were often lower when the amino acid combinations methionine + cysteine and phenylalanine + tyrosine were included in the calculation. When referencing NRC recommended allowances and minimal requirements, methionine was the first-limiting amino acid for all protein sources. Amino acid digestibility was mostly above 80% and comparable among the treatment diets. Regarding the digestible indispensable amino acid concentrations in the diets, all of them met the AAFCO nutrient profile for adult dogs at maintenance. In conclusion, both protein hydrolysates were highly digestible, high-quality protein sources, and a full substitution from CM to protein hydrolysate could result in greater protein quality, according to the DIAAS-like values of the ingredients, when compared with CM in extruded canine diets.
Collapse
Affiliation(s)
- Clare Hsu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pamela L Utterback
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carl M Parsons
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fabio Marx
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | | | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Weng K, Huo W, Song L, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effect of marketable age on nutritive profile of goose meat based on widely targeted metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Zhang W, Han Y, Shi K, Wang J, Yang C, Xu X. Effect of different sulfur-containing compounds on the structure, sensory properties and antioxidant activities of Maillard reaction products obtained from Pleurotus citrinopileatus hydrolysates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Effects of ultrasound pretreatment at different powers on flavor characteristics of enzymatic hydrolysates of cod (Gadus macrocephalus) head. Food Res Int 2022; 159:111612. [DOI: 10.1016/j.foodres.2022.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
|
22
|
Effect of glycation on physicochemical properties and volatile flavor characteristics of silver carp mince. Food Chem 2022; 386:132741. [PMID: 35339077 DOI: 10.1016/j.foodchem.2022.132741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/09/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to explore the effect of glycation on physicochemical properties and volatile flavor characteristics of silver carp mince (SCM). The changes in the degree of grafting, chemical composition, pH, color, total amino acid composition, and volatile flavor compounds of SCM with or without glucose were studied at different heating times. The results showed that the addition of glucose could promote the glycation reaction rate of SCM. Lysine and cysteine were the main amino acids involved in glycation. Glycation enhanced the overall aroma of SCM by accelerating lipid oxidation and Strecker degradation. In conclusion, these results suggest that glycation can enhance the volatile flavor of SCM during thermal processing and can be used as a volatile flavor enhancement technology for the development of protein nutrition food with good flavor from low-value fish.
Collapse
|
23
|
Yuan X, Cui H, Jin Y, Zhao W, Liu X, Wang Y, Ding J, Liu L, Wen J, Zhao G. Fatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken. Front Genet 2022; 13:902180. [PMID: 36035160 PMCID: PMC9412053 DOI: 10.3389/fgene.2022.902180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Aldehydes are primary volatile organic compounds (VOCs) in local Chinese chicken meat and contribute green grass, fatty, citrus, and bitter almond aromas to chicken meat. To understand the genetic basis of these aldehyde VOC aromas, we used approximately 500 Chinese Jingxing Yellow (JXY) chickens to conduct genome-wide association studies (GWAS) on the flavor traits with the data of single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs). In total, 501 association variants (253 SNPs and 248 INDELs) were found to be suggestively (SNPs: p-value < 2.77e-06 and INDELs: p-value < 3.78e-05) associated with total aldehydes (the sum of nine aldehydes), hexanal, heptanal, benzaldehyde, (E,E)-2,4-nonadienal, octanal, (E)-2-decenal, nonanal, decanal, and octadecanal. Of them, six SNPs and 23 INDELs reached a genome-wide significance level (SNPs: p-value < 1.38e-07 and INDELs: p-value < 1.89e-06). Potential candidate aldehyde genes were functionally annotated for lipid metabolism, especially fatty acid-related pathways and phospholipid-related gene ontology (GO) terms. Moreover, the GWAS analysis of total aldehydes, hexanal, and nonanal generated the most significant signals, and phenotypic content differed between different genotypes at candidate gene-related loci. For total aldehydes and hexanal traits, candidate genes were annotated based on the significant and suggestive variants on chromosomes 3 and 8 with highly polymorphic linkage blocks. The following candidate genes were also identified: GALM, MAP4K3, GPCPD1, RPS6KA2, CRLS1, ASAP1, TRMT6, SDC1, PUM2, ALDH9A1, MGST3, GMEB1, MECR, LDLRAP1, GPAM and ACSL5. We also found that polyunsaturated fatty acids (PUFAs) (C18:2n6c linoleic acid and C18:3n3 linolenic acid) were significantly correlated with total aldehydes and hexanal contents. PUFAs are important aldehyde precursors, and consistently, our results suggested that candidate genes involved in fatty acid pathways and phospholipid GO terms were identified in association loci. This work provides an understanding of the genetic basis of aldehyde formation, which is a key flavor-forming compound.
Collapse
|
24
|
Wu J, Zhang M, Zhang L, Liu Y. Effect of ultrasound combined with sodium bicarbonate pretreatment on the taste and flavor of chicken broth. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu China
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Zhongshan Guangdong China
| |
Collapse
|
25
|
Yang ZW, Hu MX. Effect of Ultrasonic Pretreatment on Flavor Characteristics of Brewer's
Yeast‐Peanut
Meal Hydrolysate/Xylose Maillard Reaction Products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi Wei Yang
- College of Light Industry and Food Engineering Nanning China
| | - Mei Xin Hu
- College of Light Industry and Food Engineering Nanning China
| |
Collapse
|
26
|
Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Habinshuti I, Zhang M, Sun H, Mu T. Comparative study of antioxidant and flavour characteristics of Maillard reaction products from five types of protein hydrolysates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| |
Collapse
|
28
|
Habinshuti I, Zhang M, Sun H, Mu T. Effects of ultrasound‐assisted enzymatic hydrolysis and monosaccharides on structural, antioxidant and flavour characteristics of Maillard reaction products from sweet potato protein hydrolysates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| |
Collapse
|
29
|
Arruda TR, Vieira P, Silva BM, Freitas TD, Amaral AJB, Vieira ENR, Leite Júnior BRDC. What are the prospects for ultrasound technology in food processing? An update on the main effects on different food matrices, drawbacks, and applications. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Patty Vieira
- Department of Food Technology Federal University of Viçosa Viçosa Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Qiao Y, Liao L, Shi D, An K, Jun W, Liu S. WITHDRAWN: Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Shen Y, Hu LT, Xia B, Ni ZJ, Elam E, Thakur K, Zhang JG, Wei ZJ. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem 2021; 365:130463. [PMID: 34224935 DOI: 10.1016/j.foodchem.2021.130463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Lately, plant derived proteins have been used extensively to produce Maillard reaction products (MRPs) for the preparation of various functional food products. We evaluated the effects of cysteine (Cys), methionine (Met), and thiamine (Thi) on the color and flavor development of MRPs derived from sesame seed meal. Compared with the MRPs of sesame seed hydrolysate (SSH), Cys-MRPs had the strongest antioxidant activity and fluorescence intensity, showing the stronger taste and overall acceptability. These MRPs contained the highest sulfur compounds which resulted into stronger meat flavor. Moreover, the content of free amino acids in Met-MRPs was the highest. Compared with MRPs of SSH alone, MRPs with different sulfur content had better flavor characteristics and physicochemical properties, which entail their usage in different food ingredients.
Collapse
Affiliation(s)
- Yi Shen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Long-Teng Hu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
32
|
Habinshuti I, Mu TH, Zhang M. Structural, antioxidant, aroma, and sensory characteristics of Maillard reaction products from sweet potato protein hydrolysates as influenced by different ultrasound-assisted enzymatic treatments. Food Chem 2021; 361:130090. [PMID: 34023687 DOI: 10.1016/j.foodchem.2021.130090] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Effects of energy-divergent ultrasound (EDU), energy-gathered ultrasound (EGU), and energy-gathered ultrasound-microwave (EGUM) on structure, antioxidant activities, aroma, and sensory attributes of Maillard reaction products (MRPs) from sweet potato protein hydrolysates (SPPH) were investigated. EGU and EGUM markedly enhanced the Maillard reaction (MR) progress. FTIR results revealed significant peptide structure changes in MRPs as compared to their SPPHs counterparts. EGU-MRPs exhibited the highest percentages in lower MW fractions of 200-3,000 Da, and presented a significantly enhanced ORAC value of 92.10 µg TE/mL (p < 0.05). Besides, EGU-MRPs and EGUM-MRPs showed higher content and quality of aroma compounds than other MRPs, and presented increased umami, sweetness, and sourness attributes, but decreased bitterness (p < 0.05). Their stronger umami taste was highly correlated to 1-naphthalenol, dodecanoic acid, <200, 200-500, 500-1,000 and 1,000-3,000 Da. Thus, EGU and EGUM assisted enzymatic hydrolysis coupled with MR might be promising ways to produce natural flavoring with improved antioxidant activities.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
33
|
Feng T, Hu Z, Tong Y, Yao L, Zhuang H, Zhu X, Song S, Lu J. Preparation and evaluation of mushroom ( Lentinus edodes) and mealworm ( Tenebrio molitor) as dog food attractant. Heliyon 2020; 6:e05302. [PMID: 33102877 PMCID: PMC7578686 DOI: 10.1016/j.heliyon.2020.e05302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/25/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Chicken liver is a main protein source to prepare attractant for dog food. However, animal proteins are costly. Seeking high quality and low-cost protein sources has been a goal for the industry. Mushroom Lentinus edodes (L. edodes) and Mealworm Tenebrio molitor (T. molitor) are novel protein sources, showing high potential as raw material of attractants. In this paper, chicken liver, L. edodes, and T. molitor were used as three different protein sources to prepare attractants. Their palatability to dogs were then compared. Firstly, the enzymatic hydrolysis process of three proteins was optimized, with a degree of hydrolysis of 54.82%, 36.10% and 30.14% for chicken liver, L. edodes, and T. molitor respectively. Secondly, volatile compounds of three attractants were identified by HS-SPME/GC-MS and SDE/GC-MS. Using OAV and PLRS method, it was found that bis(2-methyl-3-furyl) disulfide, indole, methional, 2-(methyl thio) phenol, γ-butyrolacton, furfuryl alcohol, acetic acid and isovaleraldehyde were the key components. Although both T. molitor and L. edodes attractant showed less palatability than that of chicken liver, they could be readily improved via adding key palatable volatile compounds. The ingestion rate of dog food with attractant showed a similar trend and was higher than that of food without attractant.
Collapse
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
| | - Zhongshan Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
| | - Yanzun Tong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
- Corresponding author.
| | - Haining Zhuang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai, 201403, PR China
| | - Xiao Zhu
- Research Computing, Information Technology at Purdue(ITaP), Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
| | - Jun Lu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Hai Quan Road, Shanghai 201418, PR China
- Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
- Corresponding author.
| |
Collapse
|
34
|
Chen X, Jiang D, Xu P, Geng Z, Xiong G, Zou Y, Wang D, Xu W. Structural and antimicrobial properties of Maillard reaction products in chicken liver protein hydrolysate after sonication. Food Chem 2020; 343:128417. [PMID: 33406574 DOI: 10.1016/j.foodchem.2020.128417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the structural and antimicrobial properties of Maillard reaction products (MRPs) in chicken liver protein (CLP) and its hydrolysate (CLPH) after sonication (SCLPH). The MRPs of CLP (CLPM), CLPH (CLPHM) and SCLPH (SCLPHM) were analyzed by several spectrometric techniques. The molecular weights of the CLPHM and SCLPHM were primarily between 1.35 kDa and 17 kDa. Moreover, the molecular weights in the CLPHM and SCLPHM below 1.35 kDa were increased, which indicated that cross-linking and thermal degradation occurred during the Maillard reaction (MR). The SCLPHM showed an obvious network skeleton, and the surface had many small crystal-shaped particles after ultrasound treatment and MR by scanning electron microscopy. The SCLPHM had more negative charges than the CLPHM, thus effectively inhibiting the growth of S. saprophyticus and E. coli. MR and ultrasound treatment could be a promising technology to expand the application prospects of low-value meat byproducts.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China
| | - Di Jiang
- Science and Technology Literature Development Service Center, Jiangsu Information Institute of Science and Technology, Nanjing 210042, PR China
| | - Pingping Xu
- Science and Technology Literature Development Service Center, Jiangsu Information Institute of Science and Technology, Nanjing 210042, PR China
| | - Zhiming Geng
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Guoyuan Xiong
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China
| | - Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| |
Collapse
|