1
|
Liu G, Gao H, Song Y, Wang H, Zhang D, Wang Y, Liu S, Li Z, Liu C, Sun Y. Multiomic analysis reveals that the flavonoid biosynthesis pathway is associated with cold tolerance in Heracleum moellendorffii Hance. FRONTIERS IN PLANT SCIENCE 2025; 16:1544898. [PMID: 40161225 PMCID: PMC11949932 DOI: 10.3389/fpls.2025.1544898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Heracleum moellendorffii Hance is a perennial herbaceous plant that is adaptable to cold environments and has both edible and medicinal value. Given that no reference genome for this species is available, we constructed a high-quality transcript isoform library using full-length transcriptome sequencing and conducted a comparative genomic analysis. Samples were obtained from plants that had been subjected to cold stress for 12, 24 and 36 hours (Cold_12, Cold_24, and Cold_36, respectively) and from control plants (Cold_0) that were not subjected to cold stress and used in transcriptome and nontargeted metabolome analyses. Compared with the genes expressed in CK (Cold_0), the number of differentially expressed genes (DEGs) in Cold 12, Cold_24, and Cold_36 increased gradually over time; plants subjected to 12, 24 and 36 hours of cold stress displayed 669, 6084, and 24,129 DEGs, respectively. The DEGs were clustered into 8 subclasses by k-means clustering; subclasses 2, 3, 4, and 7 were enriched in pathways related to "flavonoid biosynthesis". Nontargeted metabolome analysis revealed that 3719 annotated metabolites were shared by all four groups of samples. We identified 1186, 1087, and 1097 differentially accumulated metabolites (DAMs) in three comparisons: Cold_12 vs. CK, Cold_24 vs. CK, and Cold_36 vs. CK, respectively. The DAMs were predominantly enriched in the "flavonoid biosynthesis pathway". Through WGCNA, we obtained five modules and 29 flavonoid-related metabolites with extremely significant module-metabolite paired relationships (|correlation coefficient|> 0.9, P < 0.01). We analysed the DEGs and DAMs of the flavonoid biosynthetic pathway in H. moellendorffii Hance under cold stress and constructed a correlation network between transcription factors (TFs) and structural genes in the pathway. RT-qPCR was used to confirm the expression of four hub genes from the WGCNA, six TFs, and 15 structural genes of the flavonoid biosynthetic pathway. These data provide a foundation for functional genomics studies of H. moellendorffii Hance and contribute to the study of the molecular mechanisms and transcriptional regulation of flavonoid accumulation by TFs under cold stress conditions in plants.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Huan Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yu Song
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Shuo Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zhonghua Li
- Heilongjiang Greater Hinggan Mountains Region Agriculture Forestry Research Institute, Da Hinggan Ling, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Sun
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Wang L, Lin Z, Peng C, Zhang H, Zhang L, Zheng S, Chen J. Roles of ROS in physiological, microbial and metabolomic alterations of fresh-cut sugarcane under red and blue light irradiation. Food Chem X 2025; 26:102344. [PMID: 40123872 PMCID: PMC11930200 DOI: 10.1016/j.fochx.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Effects of red and blue light treatment on physiological quality, microbial loads, redox status and metabolomics profiles of fresh-cut sugarcane in vacuum and plastic packages were investigated during 15 d storage. The results showed that light synergistic vacuum treatment delayed the decrease of pH and the increase of respiration rate and microbial loads, enhanced antioxidant capacities and related enzymes activities. Light treatment was beneficial to 1O2 generation, but had opposite effects on O2 -, H2O2 and malondialdehyde. O2- and H2O2 was negatively associated with CAT, sucrose, fructose, glucose, 2-oxoglutaramate, liquiritigenin and dihydromyricetin, positively with PPO and malondialdehyde. Only phenylacetaldehyde exhibited a negative correlation with 1O2. The biosynthesis of sugars, amino acids and flavonoids were the principal metabolite pathways corresponding to oxidative stress in fresh-cut sugarcane. It could be concluded that the concentration of ROS, especially O2- and H2O2, should be appropriate to kill bacteria and retain the quality of fresh-cut sugarcane.
Collapse
Affiliation(s)
- Lu Wang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengrong Lin
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Peng
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Zhang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Zhang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujing Zheng
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiebo Chen
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zeng Z, Wang J, Wen X, Wang Y, Li X, Liu D, Geng F. Metabolomic analysis provides insights into the mechanism of color and taste changes in Dictyophora indusiata fruiting bodies under different drying processes. Food Res Int 2022; 162:112090. [PMID: 36461398 DOI: 10.1016/j.foodres.2022.112090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
In this study, we systematically assessed how the morphology and texture of edible fruiting bodies of D. indusiata (EFD) varied under three drying techniques: vacuum freeze drying (FD), vacuum drying (VD), and hot air drying (HD). It was discovered that freeze-dried EFD samples (FD-EFD) had an intact microstructure, and thus, a good appearance, textural characteristics, and rehydration properties. Quantitative metabolomic analysis revealed 801 metabolites, where 236 211 metabolites were significantly different in abundance in the comparison of hot-air dried EFD samples (HD-EFD) versus FD-EFD and vacuum-dried EFD samples (VD-EFD) versus FD-EFD, respectively. VD and HD significantly affected the abundance of taste-related compounds and resulted in the improvement of EFD's umami. The acidity of EFD is provided by organic acids produced through the tricarboxylic acid cycle. The browning of HD-EFD was caused by Maillard reactions, oxidative degradation of ascorbic acid, and endogenous enzymatic browning process dominated by the phenylalanine metabolic pathway. The metabolomic analysis provides new insights into changes in EFD by different drying processes.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
4
|
Zarei A, Feyissa BA, Davis B, Tavakouli Dinani E. Cannabis Synthetic Seeds: An Alternative Approach for Commercial Scale of Clonal Propagation and Germplasm Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3186. [PMID: 36501226 PMCID: PMC9738115 DOI: 10.3390/plants11233186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Indoor cannabis (Cannabis sativa) cultivation has been rapidly increasing in many countries after legalization. Besides conventional propagation through cuttings, synthetic seed production provides a competent system for mass propagation, germplasm conservation and international exchange of genetic materials. The present study developed a reliable protocol for cannabis synthetic seed production using encapsulation of nodal segments derived from in vitro or in vivo sources. Synthetic seeds were produced in 3% sodium alginate and 75 mM calcium chloride in Murashige and Skoog (MS) medium and stored under various environmental conditions for up to 150 days. The plantlets regrowth efficiency was monitored on culture media up to 30 days after the storage period. Regrowth rates of 70% and 90% were observed in synthetic seeds from in vitro and in vivo-derived sources, respectively, when stored in 6 °C under 50 μmol s-1 m-2 light for 150 days. Furthermore, addition of acetylsalicylic acid (ASA) to the encapsulation matrix not only postponed precocious germination of synthetic seeds at 22 °C, but also improved the regrowth rate of in vivo-derived synthetic seeds to 100% when they were stored in 6 °C under light. Exposure to light during storage significantly increased shoot length of regrown synseeds when compared to those stored in darkness. This difference in shoot growth disappeared when synseeds were treated with 25 µM ASA. All regenerated plantlets were rooted and acclimatized in sterile rockwool plugs without morphological changes.
Collapse
|
5
|
Analysis of the Fruit Quality of Pear ( Pyrus spp.) Using Widely Targeted Metabolomics. Foods 2022; 11:foods11101440. [PMID: 35627008 PMCID: PMC9140454 DOI: 10.3390/foods11101440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pear is a kind of common temperate fruit, whose metabolite composition that contributes to the difference in fruit quality is unclear. This study identified and quantified the metabolites using a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB), Pyrus usssuriensis (PU) and Pyrus pyrifolia (PP). A total of 493 metabolites were identified, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino acids, 20 vitamins, etc. The results of PCA and OPLS-DA demonstrated that the metabolite compositions differed distinctly with cultivar variability. Our results also involved some metabolic pathways that may link to the fruit quality based on KEGG pathway analysis, the pathway of phenylalanine metabolism revealed significant differences between PB and PP (p < 0.05). Furthermore, the study selected D-xylose, formononetin, procyanidin A1 and β-nicotinamide mononucleotide as the major differentially expressed metabolites in the three species. The present study can open new avenues for explaining the differences in fruit quality of the major commercial pear cultivars in China.
Collapse
|
6
|
Jasmonate resistant 1 and ethylene responsive factor 11 are involved in chilling sensitivity in pepper fruit (Capsicum annuum L.). Sci Rep 2022; 12:3141. [PMID: 35210544 PMCID: PMC8873250 DOI: 10.1038/s41598-022-07268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pepper fruit (Capsicum annuum L.) is sensitive to chilling stress with chilling injuries occurring below 7 °C; however, chilling injuries occur at different temperatures depending on the genotype. The present study aimed to identify the factors that affect chilling sensitivity in pepper fruits. A total of 112 F2 pepper fruits crossed between chilling-insensitive 'UZB-GJG-1999–51' and chilling-sensitive 'C00562' pepper were grouped according to the seed browning rate, which is a typical chilling symptom of pepper fruit under chilling conditions. Physiological traits, amino acids, fatty acids, as well as ethylene responsive factor (ERF) and jasmonate resistant 1 (JAR1) expression levels were analyzed, and their correlations with the seed browning rate were confirmed. The expression level of JAR1 showed a strong negative correlation with the seed browning rate (r = − 0.7996). The expression level of ERF11 and content of hydrogen peroxide showed strong positive correlation with the seed browning rate (r = 0.7622 and 0.6607, respectively). From these results, we inferred that JAR1 and ERF11 are important factors influencing the chilling sensitivity of pepper fruit.
Collapse
|
7
|
Song Z, Lai X, Yao Y, Qin J, Ding X, Zheng Q, Pang X, Chen W, Li X, Zhu X. F-box protein EBF1 and transcription factor ABI5-like regulate banana fruit chilling-induced ripening disorder. PLANT PHYSIOLOGY 2022; 188:1312-1334. [PMID: 34791491 PMCID: PMC8825429 DOI: 10.1093/plphys/kiab532] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/16/2021] [Indexed: 05/03/2023]
Abstract
Cold stress adversely affects plant production, both qualitatively and quantitatively. Banana (Musa acuminata) is sensitive to cold stress and suffers chilling injury (CI) when stored under 11°C, causing abnormal fruit softening. However, the mechanism underlying the abnormal fruit softening due to CI remains obscure. This study uncovered the coordinated transcriptional mechanism of ethylene F-box (EBF1) protein and abscisic acid-insensitive 5 (ABI5)-like protein in regulating chilling-induced softening disorders of Fenjiao banana. Cold stress severely inhibited the transcript and protein levels of EBF1, ABI5-like, and fruit softening-related genes. The ABI5-like protein bound to the promoters of key starch and cell wall degradation-related genes such as β-amylase 8 (BAM8), pectate lyase 8 (PL8), and β-D-xylosidase23-like (XYL23-like) and activated their activities. EBF1 physically interacted with ABI5-like and enhanced the transcriptional activity of the key starch and cell wall degradation-related genes but did not ubiquitinate or degrade ABI5-like protein. This promoted fruit ripening and ameliorated fruit CI in a manner similar to the effect of exogenous abscisic acid treatment. The ectopic and transient overexpression of EBF1 and ABI5-like genes in tomato (Solanum lycopersicum) and Fenjiao banana accelerated fruit ripening and softening by promoting ethylene production, starch and cell wall degradation, and decreasing fruit firmness. EBF1 interacted with EIL4 but did not ubiquitinate or degrade EIL4, which is inconsistent with the typical role of EBF1/2 in Arabidopsis (Arabidopsis thaliana). These results collectively highlight that the interaction of EBF1 and ABI5-like controls starch and cell wall metabolism in banana, which is strongly inhibited by chilling stress, leading to fruit softening and ripening disorder.
Collapse
Affiliation(s)
- Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Yao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiajia Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochun Ding
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiuli Zheng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Author for communication:
| |
Collapse
|
8
|
Zhang W, Jiang H, Cao J, Jiang W. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|