1
|
Qian X, Lin S, Chen T, Li S, Wang S, Li C, Wang R, Sun N. Evaluation of the texture characteristics and taste of shrimp surimi with partial replacement of NaCl by non‑sodium metal salts. Food Chem 2024; 459:140403. [PMID: 39024873 DOI: 10.1016/j.foodchem.2024.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Ionic strength plays a significant role in the aggregation behavior of myofibrillar proteins. The study investigated the effects of KCl or CaCl2 as substitutes for NaCl on the gel properties and taste of shrimp surimi at a constant ionic strength (IS = 0.51). Increased KCl substitution ratio resulted in a reduction in α-helix content and an increase in β-sheet content of myofibrillar proteins, thereby enhancing water holding capacity. Optimal KCl substitutions (1.5% NaCl +1.94% KCl) contributed to maintaining the desired taste and improving gel properties. CaCl2 facilitates the extraction and dissolution of myofibrillar proteins, resulting in an organized and dense gel network with significant water-holding capacity. However, excessive additions (>1.27%) resulted in a notable decrease in taste and gel strength due to excessive aggregation and precipitation of myofibrillar proteins. These findings provide a solid theoretical foundation for production of high-quality, low-salt shrimp surimi.
Collapse
Affiliation(s)
- Xixin Qian
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China
| | - Tingjia Chen
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Shuang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chenqi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruming Wang
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Wójciak KM, Kęska P, Kačániová M, Čmiková N, Solska E, Ogórek A. Evaluation of Quality of Nitrite-Free Fermented Roe Deer ( Capreolus capreolus) Sausage with Addition of Ascorbic Acid and Reduced NaCl. Foods 2024; 13:3823. [PMID: 39682894 DOI: 10.3390/foods13233823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the possibility of producing fermented roe deer sausages using acid whey without the addition of sodium nitrite. Additionally, ascorbic acid was added to improve the oxidative stability of the product, and sodium chloride (NaCl) was partially replaced by potassium chloride (KCl) (7:3). The sausages were analyzed after fermentation (on day 30) and during post-production aging (i.e., 60 and 90 days after production at 4 °C) for their pH, water activity (aw), redox potential (ORP), thiobarbituric acid value (TBARS), and color parameters (CIE L*, a*, and b*). The microbiological status of the products was also profiled. During aging, the aw and pH values were significantly lower (p < 0.05) in the variant with the addition of ascorbic acid. In all samples with the addition of acid whey, an increase in the TBARS value compared to the variant with sodium nitrite was observed, but among them, the variant with the substitution of NaCl by KCl was characterized by the lowest intensity of lipid oxidation. During post-production aging, the effect of acid whey on the loss of redness (a*) of the roe deer sausages was confirmed, with the lowest a* observed in samples with the addition of ascorbic acid. A total of 281 and 219 isolates with high scores were identified in the fermented deer sausages after fermentation (30 days) and storage (90 days), respectively. The most frequently isolated species from the fermented roe deer sausages were from the Latilactobacillu genus (Latilactobacillus curvatus, Lati-lactobacillus sakei subsp. carnosus) and Leuconostoc genus (Leuconostoc mesenteroides, L. mesenteroides subsp. dextrani-cum, and Leuconostoc mesenteroides subsp. mesenteroides).
Collapse
Affiliation(s)
- Karolina M Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Paulina Kęska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Elżbieta Solska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Agata Ogórek
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
3
|
Zhang L, Zhang Z, Huang J, Zhou R, Wu C. Revealing salt concentration for microbial balance and metabolite enrichment in secondary fortified fermented soy sauce: A multi-omics perspective. Food Chem X 2024; 23:101722. [PMID: 39229615 PMCID: PMC11369399 DOI: 10.1016/j.fochx.2024.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
This study examined the impact of varying salt concentrations on microbiota, physicochemical properties, and metabolites in a secondary fortified fermentation process using multi-omics techniques. It aimed to determine the influence of salt stress on microbiota shifts and metabolic activities. The findings demonstrated that moderate salt reduction (MS) was found to enhance moromi's flavor and quality, while mitigating the negative effects of excessive low salt (LS). MS samples had 1.22, 1.13, and 2.92 times more amino acid nitrogen (AAN), non-volatiles, and volatiles, respectively, than high salt (HS) samples. In contrast, lactic acid and biogenic amines in LS samples were 1.56 g/100 g and 4115.11 mg/kg, respectively, decreasing to 0.15 g/100 g and 176.76 mg/kg in MS samples. Additionally, the contents of ethanol and small peptides increased in MS due to the growth of specific functional microorganisms such as Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii, while food-borne pathogens were inhibited. Network analysis revealed that the core microbial interactions were enhanced in MS samples, promoting a balanced fermentation environment. Redundancy analysis (RDA) and correlation analyses underscored that the physicochemical properties significantly impacted bacterial community structure and the correlations between key microbes and flavor compounds. These findings provided a theoretical foundation for developing innovative reduced-salt fermentation techniques, contributing to the sustainable production of high-quality soy sauce.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Ndiaye A, Fliss I, Filteau M. High-throughput characterization of the effect of sodium chloride and potassium chloride on 31 lactic acid bacteria and their co-cultures. Front Microbiol 2024; 15:1328416. [PMID: 38435689 PMCID: PMC10904479 DOI: 10.3389/fmicb.2024.1328416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Salt (NaCl) is associated with a risk of hypertension and the development of coronary heart disease, so its consumption should be limited. However, salt plays a key role in the quality and safety of food by controlling undesirable microorganisms. Since studies have focused primarily on the effect of salts on the overall counts of the lactic acid bacteria (LAB) group, we have not yet understood how salt stress individually affects the strains and the interactions between them. In this study, we characterized the effect of sodium chloride (NaCl) and potassium chloride (KCl) on the growth and acidification of 31 LAB strains. In addition, we evaluated the effect of salts on a total of 93 random pairwise strain combinations. Strains and co-cultures were tested at 3% NaCl, 5% NaCl, and 3% KCl on solid medium using an automated approach and image analysis. The results showed that the growth of LAB was significantly reduced by up to 68% at 5% NaCl (p < 0.0001). For the co-cultures, a reduction of up to 57% was observed at 5% NaCl (p < 0.0001). However, acidification was less affected by salt stress, whether for monocultures or co-cultures. Furthermore, KCl had a lesser impact on both growth and acidification compared to NaCl. Indeed, some strains showed a significant increase in growth at 3% KCl, such as Lactococcus lactis subsp. lactis 74310 (23%, p = 0.01). More importantly, co-cultures appeared to be more resilient and had more varied responses to salt stress than the monocultures, as several cases of suppression of the significant effect of salts on acidification and growth were detected. Our results highlight that while salts can modulate microbial interactions, these latter can also attenuate the effect of salts on LAB.
Collapse
Affiliation(s)
- Amadou Ndiaye
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Ismail Fliss
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Wang Q, Shan C, Zhang P, Zhao W, Zhu G, Sun Y, Wang Q, Jiang Y, Shakoor N, Rui Y. The combination of nanotechnology and potassium: applications in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1890-1906. [PMID: 38079036 DOI: 10.1007/s11356-023-31207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Potassium fertilizer is indispensable for ensuring crop production, which in turn supports global food supply and safe farming practices. Potassium resources are primarily located in the Northern Hemisphere, leading to a current shortage of affordable potash and severe soil deficiencies in certain regions of the Southern Hemisphere. There is a shift away from mined salts in favor of locally available potassium resources. Utilizing potassium-rich silicates, for instance, could be a viable option to address this situation. The imperative of enhancing crop productivity and quality necessitates either increasing potassium availability or utilizing potassium more efficiently. Geneticists may find the development of plants that use potassium more effectively to be a valuable pursuit. Nanomaterials are increasingly becoming part of people's professional lives as a novel material category. This technology is gradually finding applications in agriculture to boost crop yields while reducing environmental pollution. This paper reviews the applications of common potassium-containing materials, explores the effects and mechanisms of nano-fertilizers on plants, and offers insights into future applications of nano-potassium fertilizers in agriculture. All in all, the application of nanotechnology in the production and utilization of potassium fertilizers is both necessary and effective. However, there are still many gaps in the current field of nano-potassium fertilizer application that require further research. It is hoped that this review can serve as a valuable reference for researchers working in this field.
Collapse
Affiliation(s)
- Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Shan
- Department of Plant Nutrition, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China.
- China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
6
|
Chuang L, Jiyong S, Chenguang Z, Xiaowei H, Xiaodong Z, Zhikun Y, Zhihua L, Xuetao H, Yanxiao L, Jianbo X, Xiaobo Z. Effects of sodium chloride substitutes on physicochemical properties of salted beef. Food Chem X 2023; 20:100885. [PMID: 38144776 PMCID: PMC10740021 DOI: 10.1016/j.fochx.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
In this study, beef was marinated with different low-sodium salt substitutes and heated and aged by employing superheated steam roasting and traditional roasting to investigate the effects of the various substitutes on the physicochemical properties, texture profile, sensory properties, volatile compounds, microstructural characteristics, and safety of cured and aged beef. Twenty kilograms of beef were arbitrarily divided into five treatments and pickled with different low-sodium salt substitutes. The results revealed no significant differences in saltiness, physicochemical characteristics, texture profile, or volatile compounds between the T2 and T3 and T1 (100% NaCl, T1; 75% KCl + 25% NaCl, T2; 50% KCl + 50% NaCl, T3) samples. Furthermore, the T4 and T5 (50% NaCl + 25% KCl + 20% MgCl2 + 5% CaCl2, T4; 100% yeast extract, T5) samples had lower saltiness than the T1 sample. The plasmolysis percentage and osmotic pressure of the T2 and T3 samples were lower than those of the T1 sample. Therefore, reducing sodium by substituting NaCl with 50% KCl or 75% KCl maintained an acceptable sensory and safety profile for beef consumption.
Collapse
Affiliation(s)
- Li Chuang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhou Chenguang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Huang Xiaowei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhai Xiaodong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yang Zhikun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hu Xuetao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Yanxiao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiao Jianbo
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China
| |
Collapse
|
7
|
Li L, Zhang G, Zheng Y, Bi X, Jia N, Liu D. Effects of ultrasound-assisted curing on the quality and microstructure of low-sodium beef jerky. ULTRASONICS SONOCHEMISTRY 2023; 101:106679. [PMID: 37939527 PMCID: PMC10654025 DOI: 10.1016/j.ultsonch.2023.106679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
The effects of ultrasonic brine on the physicochemical properties, sensory quality and microstructure of low-sodium beef jerkies were investigated. Compared with control jerky brined in 1.5% NaCl solution, both of the direct reduction and partial replacement of 50% NaCl by KCl decreased the sodium content. Ultrasonic treatment resulted in sharp reduction in shear force. KCl substitution together with ultrasonic treatment caused the highest yield, a* value and water content, and the water activity of all groups were below 0.85. Only the direct reduction of NaCl had negative effects on the sensory quality. KCl substitution combined with ultrasonic treatment was the most suitable for producing low-sodium beef jerkies with high quality, possibly because the mixed salt had equal total salt content to control. Meanwhile, the cavitation and mechanical effects of ultrasound may unfold protein structure, increase myofibrillar fragmentation index and break the muscle fiber, thus improving the quality of beef jerky.
Collapse
Affiliation(s)
- Lingli Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Guangyao Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Yue Zheng
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xinxin Bi
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
8
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
9
|
Pu X, Ruan J, Wu Z, Tang Y, Liu P, Zhang D, Li H. Changes in Texture Characteristics and Special Requirements of Sichuan-Style Braised Beef for Industrial Production: Based on the Changes in Protein and Lipid of Beef. Foods 2023; 12:foods12071386. [PMID: 37048204 PMCID: PMC10093410 DOI: 10.3390/foods12071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to investigate the optimal stewing time (0, 30, 60, 90, 120, and 150 min) for industrialized preparation of Sichuan-style braised beef with different demands. With prolonged stewing time, the hardness and chewiness of the braised beef initially increased and then decreased (p < 0.05), whereas springiness and cohesiveness gradually decreased. The moisture content of braised beef and the endogenous fluorescence intensity of braised beef protein significantly decreased (p < 0.05). However, the thiobarbituric acid reaction substances (TBARS) value and protein carbonyl content of braised beef greatly increased (p < 0.05). During the stewing process, the texture properties of Sichuan-style braised beef were affected by the moisture content, oxidation of proteins and lipids, and integrity of the muscle fibers. Considering texture traits, when Sichuan-style pre-braised beef bought by consumers is stewed with other ingredients for about 30 min, its corresponding stewing time is 60 min in industrialized production processes. This process parameter can not only save energy consumption for practical production, but also improve the hardness value of the as-obtained Sichuan-style pre-braised beef, which is conducive to transportation through refraining from cracking of pre-braised beef pieces. When consumers only use simple heating to eat the Sichuan-style pre-braised beef product, stewing times of 120 or 150 min can be considered in industrialized production processes. This work provided a theoretical reference for the industrialized and standardized production of different types of prepared Sichuan-style braised beef.
Collapse
Affiliation(s)
- Xiaoli Pu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jinggang Ruan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhicheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Hongjun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Effects of Partial Replacement of NaCl with KCl on Protein Properties and Quality Attributes of Lightly Salted Tilapias Fillets. Foods 2023; 12:foods12061184. [PMID: 36981111 PMCID: PMC10048763 DOI: 10.3390/foods12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The evolution of quality attributes and their association with the protein properties of lightly tilapias fillets salted with different replacement proportions of NaCl with KCl (0%, 10%, 30%, 50%, 70%, 100%) at the same ionic strength were investigated. KCl replacements using optimal substitution (50% of KCl) contributed to maintaining desired quality properties. Further, KCl replacement (about 50~70% of KCl) led to the insolubilization and weakened stability of myofibrillar proteins, represented by the unfolding of the myofibrillar protein, increased surface hydrophilic points, and strengthened internal protein-protein interaction, resulting in the structurally reinforced hardness and lower water-holding capacity. Excessive replacement (more than 70% of KCl) showed apparent deterioration in taste quality, coloration, and hardness received by sensory sensation caused by immoderate hydrolysis and aggravated oxidation of the myofibrillar protein. In this sense, insights into KCl replacements on protein properties might be a positive approach to improving quality attributes of lightly salted tilapias fillets.
Collapse
|
11
|
Zou L, Yu X, Zhou Y, Chen C, Xiao G. In vitro digestibility of proteins, peptidomic analysis and antioxidant ability of sodium-reduced pork sausage with partial substitution of NaCl by KCl. Meat Sci 2023; 197:109049. [PMID: 36473271 DOI: 10.1016/j.meatsci.2022.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
High salt (NaCl) consumption can impact on human health, and KCl is the most widely used replacement salt in meat products. This study investigated the effects of 0% NaCl (NS), 3% NaCl (HS), 1.95% NaCl (RS), 1.95% NaCl+1.05% KCl (RS + K) on protein digestibility of pork sausage in vitro. The results indicated that RS + K showed the highest gastrointestinal digestibility (GID) because of the structure of looser cross-linked strands and uniform cavities, while HS exhibited the lowest GID. RS + K released more peptides (2499) during gastrointestinal than NS (2301), RS (2130) and HS (2235), with a higher proportion of peptides with molecular weights <1000 Da, and more unique peptides. Meanwhile, the digestion product of RS + K exhibited excellent radical scavenging activity and improved the antioxidant abilities to reduce oxidative injury which was induced by H2O2 in HepG2 cells. These results demonstrated that partial substitution with KCl can be an effective strategy for improving the digestibility of sodium-reduced gel-type meat products.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
12
|
The Establishment of Evaluation Models for the Cooking Suitability of Different Pork Muscles. Foods 2023; 12:foods12040742. [PMID: 36832817 PMCID: PMC9956234 DOI: 10.3390/foods12040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Pork is the main meat consumed by Chinese people. In this study, the sensory quality of four muscles (loin, shoulder, belly, and ham) under three cooking methods (boiling, scalding, and roasting) was examined, and the edible quality and nutritional quality of fresh meat were determined at the same time. Principal component analysis, cluster analysis, correlation analysis, and analysis of the coefficient of variation were used to determine key quality indicators, from which comprehensive quality evaluation equations were established. The results showed that, when meat was boiled, the comprehensive quality evaluation model was Y=0.1537X1+0.1805X2+0.2145X3+0.2233X4+0.2281X5 (X1~X5 are a*, fat, odor, tenderness, and flavor, respectively) and the most suitable muscle was belly; when meat slices were scalded in a hot pot, the comprehensive quality evaluation model was Y=0.1541X1+0.1787X2+0.2160X3+0.2174X4+0.2337X5 (X1~X5 are a*, fat, odor, tenderness, and flavor, respectively) and the most suitable muscle was belly; when meat was roasted, the comprehensive quality evaluation model was Y=0.1539X1+0.1557X2+0.1572X3+0.1677X4+0.1808X5+0.1845X6 (X1~X6 are flavor, marbling, elasticity, cooked flesh color, tenderness, and flesh color, respectively), and the most suitable muscles were belly and shoulder.
Collapse
|
13
|
Mao J, Fu J, Zhu Z, Jin D, Shen S, Yuan Y, Chen Y. Impact of KCl and ultrasound on the structural properties of myofibrillar proteins in low sodium semi-dried large yellow croaker (Pseudosciaena croea). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Qin LG, Li XA, Huang YX, Li YJ, Chen Q. Flavour Profile of Traditional Dry Sausage Prepared with Partial Substitution of NaCl with KCl. Foods 2023; 12:foods12020388. [PMID: 36673479 PMCID: PMC9858023 DOI: 10.3390/foods12020388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The effects of partial substitution of NaCl with 0%, 20%, 30% and 40% KCl on the physical characteristics, bacterial community and flavour profile of traditional dry sausage were investigated in this study. With the increase in KCl substitution ratio, the moisture content, astringency, bitterness and umami increased significantly, and the saltiness gradually decreased (p < 0.05). The high-throughput sequencing results showed that the dry sausages with KCl substitution had relatively high abundances of Staphylococcus. For volatile compounds, increasing the KCl substitution ratio reduced the formation of aldehydes, ketones and some alcohols, but promoted the formation of acids and esters (p < 0.05). Sensory evaluation and partial least square regression analysis showed that the dry sausages with 20% and 30% KCl were similar in overall physical and microbial properties, flavour profiles and sensory attributes, and the sausages with 40% KCl were characterized by taste defects. Overall, partial substitution of NaCl with 30% KCl could ensure the acceptable flavour and sensory attributes of dry sausages.
Collapse
Affiliation(s)
- Li-Gang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Ao Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Xiang Huang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Yong-Jie Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-55191794
| |
Collapse
|
15
|
RUJIRAPONG C, SIRIPONGVUTIKORN S, USAWAKESMANEE W, WANIKORN B. Quality changes when replacing NaCl with KCl in shrimp head paste. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Zhu N, Zang M, Wang S, Zhang S, Zhao B, Liu M, Li S, Wu Q, Liu B, Zhao Y, Qiao X. Modulating the structure of lamb myofibrillar protein gel influenced by psyllium husk powder at different NaCl concentrations: Effect of intermolecular interactions. Food Chem 2022; 397:133852. [PMID: 35940098 DOI: 10.1016/j.foodchem.2022.133852] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
In this study, a strategy involving psyllium husk powder (PHP) was proposed to alleviate the textural deterioration of protein gels under low-sodium conditions. Results revealed that myofibrillar protein (MP) in 0.3 M NaCl could accommodate more PHP to achieve better gels properties compared with that of 0.6 M NaCl. The 3 % addition of PHP could lessen the textural deterioration of gels at 0.3 M NaCl because of the insertion of PHP into the hydrophobic cavity of MP. Consequently, the reduction in protein viscoelasticity and the thermal stability of the head and tail of myosin improved. α-Helix structures unfolded, intermolecular forces formed, and proteins aggregated. Molecular docking predicted hydrogen bonds and hydrophobic interactions as the main forces to stabilize the conformation of composites. Experiments further verified that hydrophobic interactions and disulfide bonds were the main forces that stabilized the structure of MP-PHP composite gels.
Collapse
Affiliation(s)
- Ning Zhu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China.
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China.
| | - Shunliang Zhang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Meng Liu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Su Li
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Qianrong Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Bowen Liu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Yan Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068 Beijing, China
| |
Collapse
|
17
|
Huang Y, Zhou Y, Liu Y, Wan J, Hu P, Liu L, Li M, Zhou Y, Gu S, Chen D, Hu B, Hu K, Zhu Q. Effects of tea branch liquid smoke on oxidation and structure of myofibrillar protein derived from pork tenderloin during curing. Food Chem X 2022; 17:100544. [PMID: 36845486 PMCID: PMC9943755 DOI: 10.1016/j.fochx.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
This study focused on how different concentrations of tea branch liquid smoke (TLS) in the curing solution impacted the physicochemical properties and antioxidant properties of pork tenderloin. Five experimental (1.25 mL/kg, 2.5 mL/kg, 5 mL/kg, 10 mL/kg, 20 mL/kg) and blank groups set up over 4 days, and it was found that the physicochemical indexes, antioxidant capacity, thermal stability and protein network structure of the cured meat using 5 mL/kg of liquid smoke were excellent than the other groups used (P < 0.05). However, concentrations at 20 mL/kg accelerated protein oxidation. Low frequency nuclear magnetic resonance (LFNHR) revealed that TLS also improved the water holding capacity of the cured meat by increasing the percentage of bound water. Additionally, the correlation analysis demonstrated that the inoxidizability of myofibrillar protein was significantly related to cooking loss and water distribution, which were adjusted by changing the usage of liquid smoke.
Collapse
Affiliation(s)
- Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Bokai Hu
- Guizhou Provincial Institute of Walnut, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Ke Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
18
|
Effects of lysine and arginine addition combined with high-pressure microfluidization treatment on the structure, solubility, and stability of pork myofibrillar proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Liu L, Zhou Y, Wan J, Zhu Q, Bi S, Zhou Y, Gu S, Chen D, Huang Y, Hu B. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin: On the basis of molecular docking. Food Chem X 2022; 15:100401. [PMID: 36211757 PMCID: PMC9532708 DOI: 10.1016/j.fochx.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxy alcohols affect salt diffusion and moisture migration. Polyhydroxy alcohols cause the water to migrate out to reduce aw in meat. Polyhydroxy alcohols retard salt diffusion into the meat by forming a viscose barrier. Polyhydroxy alcohols can prevent meat structural damage by binding to myosin.
This study investigated the mechanism of glycerol, xylitol, and sorbitol-mediated curing of cured minced pork tenderloin. The use of polyhydroxy alcohol during mediated curing significantly reduced the salt content (p < 0.01) and water activity (aw) of the cured pork tenderloin. Low-field nuclear magnetic resonance (LFNMR) revealed that 1 % glycerol, 1 % xylitol, 1 % sorbitol, and 10 % glycerol-mediated curing decreased water mobility, and improved water holding capacity (WHC), and produced uniform dense microstructures. Raman spectroscopy and molecular docking indicated that polyhydroxy alcohols formed hydrogen bonds with myosin, as well as hydrogen bonds with free water molecules to convert free water into bound water to reduce aw, and altered the hydrophobic environment of myosin surface to reduce structural damage caused by high salt content. In conclusion, using polyhydroxy alcohol to mediate curing can effectively reduce the salt content of cured meat and provide a theoretical basis for its application in the cured meat industry.
Collapse
|
20
|
Li Z, Xie S, Sun B, Zhang Y, Liu K, Liu L. Effect of
KCl
replacement of
NaCl
on fermentation kinetics, organic acids and sensory quality of sauerkraut from Northeast China. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Shuangyu Xie
- College of Food Science Northeast Agricultural University Harbin China
| | - Bo Sun
- College of Food Science Northeast Agricultural University Harbin China
| | - Yu Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Kai Liu
- College of Food Science Northeast Agricultural University Harbin China
| | - Li Liu
- Heilongjiang Institute for Drug Control affiliated to Heilongjiang Medical Products Administration Heilongjiang Province People’s Government Harbin China
| |
Collapse
|
21
|
A multivariate insight into the organoleptic properties of porcine muscle by ultrasound-assisted brining: Protein oxidation, water state and microstructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Pi R, Li G, Zhuang S, Yu Q, Luo Y, Tan Y, Dai R, Hong H. Effect of the Partial Substitution of Sodium Chloride on the Gel Properties and Flavor Quality of Unwashed Fish Mince Gels from Grass Carp. Foods 2022; 11:foods11040576. [PMID: 35206053 PMCID: PMC8871401 DOI: 10.3390/foods11040576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive salt is usually required to maintain good gel properties and quality characteristics for unwashed fish mince gels (UFMG). This study aimed to investigate the effects of partial sodium chloride substitution (30%) with different substitutes (potassium chloride, disodium inosine-5′-monophosphate, basil) on the gel and flavor properties of UFMG from Ctenopharyngodon idellus. The results indicated that the texture and gel strength of NK (30% NaCl was replaced with 30% KCl) were fairly similar to that of N group (NaCl only), and the whiteness had improved significantly (p < 0.05), while the product eventually yielded a certain bitter taste. The addition of disodium inosine-5′-monophosphate (DIMP) significantly (p < 0.05) increased the hardness, chewiness, buriedness degree of tryptophan and gel strength, decreased the content of α-helix structure in the gels, while less change occurred in gel whiteness and network structure. Basil significantly (p < 0.05) reduced the buriedness degree of tryptophan, gel strength and whiteness, and deteriorated the gel structure. Nevertheless, the addition of DIMP or basil reduced the bitterness induced by KCl and improved the overall acceptability scores of gels of the N group. Moreover, there was no distinct difference in moisture content and water-holding capacity between all groups. Therefore, replacing sodium chloride in UFMG with 25% potassium chloride and 5% DIMP may be an ideal sodium salt substitution strategy.
Collapse
Affiliation(s)
- Ruobing Pi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Gaojing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Ruitong Dai
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence:
| |
Collapse
|
23
|
Investigating Morphology of Food Systems and Water-biopolymer Interactions in Food Using 1H NMR Relaxometry. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09712-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Wang J, Li J, Wang R, Xu F, Zeng X. Improving water retention of chicken breast meats by CaCl
2
combined with pulsed electric fields. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jiachen Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Jian Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Rui Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Fei‐Yue Xu
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
25
|
Influence of Partial Replacements of NaCl by KCl on Quality Characteristics and the Heterocyclic Aromatic Amine Contents of Bacon. Foods 2022; 11:foods11020143. [PMID: 35053875 PMCID: PMC8774441 DOI: 10.3390/foods11020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The influence of partial replacements of NaCl by KCl (0, 10, 20, and 30%) on the heterocyclic aromatic amine (HAAs) contents and quality characteristics of bacon were investigated. The Na+ content, moisture, aw, pH, L* value, and sensory saltiness decreased and K+ content, a* value, and sensory bitterness increased significantly with increased substituting rates of NaCl by KCl (p < 0.05). There were no significant differences between the control and KCl substitution samples for the b* value, redness, and sensory off-odor (p > 0.05). The creatine content was not affected by the different KCl-substituting rates during the marinating process (p > 0.05), but it diminished in the smoking and frying processes (p < 0.05). The increase in the KCl-substituting rates increased the total heterocyclic aromatic amine (HAA) contents in fried bacon (p < 0.05). Moreover, the nonpolar HAA content in bacon was higher than the polar HAA content (p < 0.05). In summary, the partial replacement of NaCl by KCl increased the total HAA content and led to changes in bacon quality.
Collapse
|
26
|
Hu LT, Elam E, Ni ZJ, Shen Y, Xia B, Thakur K, Jiang L, Zhang JG, Wei ZJ. The structure and flavor of low sodium seasoning salts in combination with different sesame seed meal protein hydrolysate derived Maillard reaction products. Food Chem X 2021; 12:100148. [PMID: 34761203 PMCID: PMC8568604 DOI: 10.1016/j.fochx.2021.100148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022] Open
Abstract
The structural and physicochemical properties of a low sodium MRPs were investigated.. Different MRPs low sodium seasoning salts had better flavor characteristics. CMS had the largest bulk density and the highest sensory score. SMS had good hygroscopicity and thermal stability during storage. TMS had the highest solubility, which is significant for its use as seasoning salt.
In recent years, Maillard peptides have attracted considerable attention of food researchers due to their distinct flavor properties in food processing. We investigated the structure and flavor properties of the newly developed low-sodium seasoning salt with sesame seed hydrolysate Maillard products (SSH-MRPs), cysteine Maillard products (Cys-MRPs), methionine Maillard products (Met-MRPs), and thiamine Maillard products (Thi-MRPs). Compared to the control group, the Cys-MRPs salt (CMS) had the smallest angle of repose, the highest bulk density, and the highest sensory score. The seasoning salt with SSH-MRPs (SMS) had appreciable hygroscopicity and thermal stability. The seasoning salt with Thi-MRPs (TMS) had the highest solubility. These MRPs seasoning salts showed better flavor characteristics and physicochemical properties, suggesting that MRPs can replace part of NaCl to develop new low sodium seasoning salts and promote their application in food flavoring systems.
Collapse
Affiliation(s)
- Long-Teng Hu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Yi Shen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Li Jiang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
27
|
Li R, Kuang W, Hu Y, Jin W, Liao E, Chen J, Zhou X, Wang H. Study on the water state, migration, and microstructure modification during the process of salt-reduced stewed duck. J Food Sci 2021; 86:4087-4099. [PMID: 34337755 DOI: 10.1111/1750-3841.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
High salt content is one of the major problems for stewed products. To help address this issue, the effect of salt reduction on water migration in stewed ducks was investigated through diverse approaches, including water activity (Aw) and water-holding capacity (WHC) assay, as well as low-field nuclear magnetic resonance (LF-NMR) and scanning electron microscopy (SEM) observation. Our results showed that Aw value remained stable, while centrifugal loss decreased, and cooking loss increased significantly (p < 0.05). The analysis of NMR indicated that, during the marinating stage, the proportion of immobilized water increased from 86.86%-89.66% (sodium chloride group) and 90.51% (salt-reduced group), respectively. After 2 h, the free water content became 0, and then became stable until the end of marinating. In the stewing stage, at the beginning 20 min, relaxation time of immobilized water decreased to about 35 ms and the ratio of immobilized water significantly reduced (p < 0.05) by 5.38% (sodium chloride group) and 5.95% (salt-reduced group), respectively. Free water peak was detected upon stewing of 10 min, and 20 min later, there was no significant difference in the proportion of free water (p > 0.05). In general, no significance was observed in water behavior and microstructure of stewed duck meat between the salt reduction group and sodium chloride group. In addition, SEM analysis revealed that marinating could expand the muscle fiber gap to accommodate more immobilized water. However, the fiber was looser at the initial stage of stewing and then became more compact. PRACTICAL APPLICATION: This work demonstrates potentially feasible to produce salt-reduced duck products.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wei Kuang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yili Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Xiaorong Zhou
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|