1
|
Gao Z, Zhang D, Liu L, He J, Xu A, Wang Z. Unveiling the aroma retention secrets in roasted ducks: Structural properties and formation mechanisms of micro-nano particles of aroma-containing compounds. Food Res Int 2025; 207:116122. [PMID: 40086978 DOI: 10.1016/j.foodres.2025.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
The study aimed to investigate changes in morphology, structural properties, volatile organic compounds (VOCs), and interbinding mechanisms of the micro-nano particles of aroma-containing compounds (MNPs-ACCs) in roasted ducks subjected to different roasting times (0, 20, 30, 40, 50, 60 min) with varied filtration scales (centrifugation, microfiltration, and ultrafiltration). The presence of MNPs-ACCs in roasted ducks was confirmed by the Tyndall effect, scanning electron microscopy, and electronic nose. These particles showed negative charge, increased size and ζ-potential, and decreased dispersion index with roasting times. Moreover, a shift from ordered (α-helix and β-turn) to disordered conformations (β-sheet and random coil) in the MNPs-ACCs during roasting, along with increased hydrophobicity, exposing more odor-binding sites. Fluorescence spectroscopy and wide-angle X-ray results similarly validated this result. Meanwhile, thirty-six characteristic VOCs (variable importance scores ≥1), mainly aldehyde and alcohol, were identified in the MNPs-ACCs. Higher filtration intensity reduced relative aldehyde and alcohol content while increasing ester and ketone. The interaction analysis further confirmed that the MNPs-ACCs transitioned from noncovalent to covalent binding during roasting, forming more stable structures. Overall, biomolecular self-assembly during roasting generates micro-nano particles that serve as VOC carriers, providing novel insights into flavor development and retention in roasted ducks.
Collapse
Affiliation(s)
- Ziwu Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Linggao Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jinhua He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Anqi Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
2
|
Guan H, Zhang W, Tian Y, Leng S, Zhao S, Liu D, Diao X. Analysis of the flavor profile of chicken white soup with varying fat addition using GC-MS, GC-IMS and E-nose combined with E-tongue. Food Chem X 2025; 26:102335. [PMID: 40115503 PMCID: PMC11924936 DOI: 10.1016/j.fochx.2025.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
The research utilized a combination of gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and E-nose to examine the impact of fat addition on the aroma profile of chicken white soup. The concentration of volatile flavor compounds in the white soup significantly increased with rising fat addition. A total of 105 volatile compounds were detected in the soup through GC-MS, and 72 by GC-IMS. Moreover, adding 2 % fat could effectively enhance the aroma of the chicken soup, and the soup exhibited the highest concentration of free amino acids (211.29 μg/mL) and nucleotides (27.55 mg/100 mL). However, the taste activity value of 5'-nucleotides was below 1, suggesting that fat addition had minimal impact on the umami taste of white soup. The study demonstrates that appropriate fat supplementation can enhance the aroma of chicken white soup and lays a theoretical groundwork for the advancement of premium-quality chicken white soup with rich aroma.
Collapse
Affiliation(s)
- Haining Guan
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Wenxiu Zhang
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Yanli Tian
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Siqi Leng
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Shifa Zhao
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| | - Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, China
| |
Collapse
|
3
|
Nie S, Zhang L, Xie Y, Feng S, Yu Y, Tan C, Tu Z. Effects of different thermal processing methods on physicochemical properties, microstructure, nutritional quality and volatile flavor compounds of silver carp bone soup. Food Chem X 2025; 26:102319. [PMID: 40115501 PMCID: PMC11924938 DOI: 10.1016/j.fochx.2025.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025] Open
Abstract
In this study, silver carp by-products were used as raw materials to prepare silver carp bone soup under four processing conditions: CF, CY, GF, and GY. The results showed that the content of soluble protein and FAA content in fish soup increased significantly after high-pressure cooking, decreased the particle size of micro-nanoparticles of protein and fat, and rendered the system relatively more stable. It was also found that the GY samples had a significantly higher variety and abundance of flavor compounds than the other three groups of samples. The results of the correlation network model showed that m-phthalaldehyde and phenylacetaldehyde were significantly correlated with most of the FFAs, and Met, Ile and Arg were significantly positively correlated with most of the flavor compounds. In conclusion, the nutritional quality and flavor of silver carp were relatively improved after high-pressure cooking (pressure 70 kPa, cooking for 45 min).
Collapse
Affiliation(s)
- Shi Nie
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yutong Xie
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
| | - Shiru Feng
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yaqin Yu
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
| | - Chunming Tan
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science Jiangxi Normal University, Nanchang 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
4
|
Shi H, Jiang M, Zhang X, Xia G, Shen X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res Int 2025; 202:115531. [PMID: 39967124 DOI: 10.1016/j.foodres.2024.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Collagen and its hydrolysates have high bioavailability, good biocompatibility, biodegradability, and biological activity which has meant that they have been widely used in food, medicine, cosmetics, and other industries. Although the properties and applications of collagen have been reviewed recently, few studies have focused on aquatic collagen. To provide readers with a deeper understanding of aquatic collagen, this review addresses the structure and properties of aquatic collagen and compares them with mammalian collagen, as well as the differences between collagen, gelatin, and collagen peptides. In contrast to mammalian collagen, aquatic collagen prevents zoonotic diseases, reduces environmental pollution, improves the utilization of aquatic resources, and facilitates the extraction and separation of active oligopeptides. Additionally, methods for screening functional peptides using in vitro digestion have been introduced. Finally, the review focuses on the applications of collagen and its derivatives in food preservation (packaging films, coatings, additives, and antifreeze peptides), drug delivery (microcapsules, emulsions, nanoparticles, and hydrogels), nutrition, and healthcare.
Collapse
Affiliation(s)
- Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengqi Jiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
5
|
Harlina PW, Maritha V, Geng F, Nawaz A, Yuliana T, Subroto E, Dahlan HJ, Lembong E, Huda S. Comprehensive review on the application of omics analysis coupled with Chemometrics in gelatin authentication of food and pharmaceutical products. Food Chem X 2024; 23:101710. [PMID: 39206450 PMCID: PMC11350464 DOI: 10.1016/j.fochx.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Gelatin is a protein molecule that can be hydrolyzed from collagen, animal bones, skin and it easily soluble in water. Source animals for gelatin ingredients must be evaluated, as well as their halal status. The omics method towards gelatin authentication in food and pharmaceutical products has several advantages, including high sensitivity and reliable data. Omics investigation employs the process of breaking down substances into small particles, hence enhancing the ability to detect a greater number of compounds. Omics study has the capability to identify substances at the subclass level, which makes it highly suitable for gelatin authentication. Gelatin lipids, metabolites, proteins, and volatile chemicals can be utilized as references to authenticate gelatin. In adopting gelatin authentication, lipidomics, metabolomics, proteomics, and volatilomics must be combined with chemometrics for data interpretation. Chemometrics can convert omics analysis data into easily viewable data. Chemometric approaches capable of presenting omics analysis data for gelatin authentication include PCA, HCA, PLS-DA, PLSR, SIMCA, and FACS. Visually chemometrically explain the differences in gelatin from different animal sources. The combination of omics analysis and chemometrics is a very promising technology for gelatin authentication in food and pharmaceutical products.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
- Padjadjaran Halal Center, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Vevi Maritha
- Pharmacy Study Program, Faculty of Health and Science, Universitas PGRI, Madiun, Indonesia
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Tri Yuliana
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Havilah Jemima Dahlan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Syamsul Huda
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| |
Collapse
|
6
|
Yao XN, Dong RL, Li YC, Lv AJ, Zeng LT, Li XQ, Lin Z, Qi J, Zhang CH, Xiong GY, Zhang QY. pH-shifting treatment improved the emulsifying ability of gelatin under low-energy emulsification. Int J Biol Macromol 2024; 282:136979. [PMID: 39490473 DOI: 10.1016/j.ijbiomac.2024.136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The effects of pH-shifting treatments (pH 3, 5, 7, 9, and 11) on the stability of gelatin emulsions made by low-energy stirring were investigated. pH-shifting treatments significantly enhanced the ESI and EAI of the emulsion (P < 0.05) and reduced its particle size (P < 0.05) under low-energy emulsifying conditions. The pH11-7 shifting treatment significantly increased the degree of depolymerization and the level of ordered structure of gelatin (P < 0.05). These transformations resulted in a significant increase in the exposure of hydrophobic and negatively charged residues (P < 0.05) on the surface of gelatin, facilitating a faster adsorption rate of gelatin onto the oil-water interface as well as an increase in the amount of gelatin adsorbed at the interface. Moreover, the alkali-shifting treatment promoted the formation of a thin viscoelastic interfacial film, which contributed to the enhanced stability of the emulsion.
Collapse
Affiliation(s)
- Xiu-Ning Yao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Xue-Qing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Zhou Lin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China.
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
7
|
Chen G, Ling XY, Xie MS, Xiong YF, Li TT, Wang Y, Shui CL, Li CM, Xu BC, Ma F. Systematic evaluation of the meat qualities of free-range chicken (Xuan-Zhou) under different ages explored the optimal slaughter age. Poult Sci 2024; 103:104019. [PMID: 38991384 PMCID: PMC11283215 DOI: 10.1016/j.psj.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Meat qualities of free-range chicken (Xuan-Zhou) (XZ-FRC) are closely associated with slaughter age and directly influence the economic benefits of supplier and consumer's preference. Understanding of the relationship between meat qualities and ages will be of prime important to explore a better slaughter age of XZ-FRC. In this study, the quality traits of breast and thigh muscles from XZ-FRCs at 9 to 14 wk were analyzed to establish a relatively reliable method for selecting a better slaughter age. The results showed that the effects of slaughter ages on color (CIE L*, a* and b* values), shear force, centrifugal loss, and flavor of XZ-FRCs were significant (P < 0.05). There were greater differences in meat qualities, whatever breast or thigh muscles, between same or different ages. Eleven feature indexes used for colligation evaluation of slaughter age were selected by combining the quality characteristics and data analysis. The score of colligation evaluation for XZ-FRCs at 12 wk was higher than that at 9 and 14 wk, suggesting that the 12 wk was an optimal slaughter age. This work would provide a reference method that helps the producers of livestock and poultry to select a better slaughter age.
Collapse
Affiliation(s)
- Guang Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xun-Yan Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Ming-Shu Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yang-Fan Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Ting-Ting Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Cong-Lin Shui
- South Anhui Distinctive Agricultural Product Processing Technology Research and Application Center, Xuanzhou District Bureau of Agriculture and Rural Affairs, Xuancheng 242000, Anhui Province, China
| | - Chao-Mu Li
- Anhui Muzi Agriculture and Animal Husbandry Development Co., Ltd., Xuancheng 242000, Anhui Province, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; South Anhui Distinctive Agricultural Product Processing Technology Research and Application Center, Xuanzhou District Bureau of Agriculture and Rural Affairs, Xuancheng 242000, Anhui Province, China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; South Anhui Distinctive Agricultural Product Processing Technology Research and Application Center, Xuanzhou District Bureau of Agriculture and Rural Affairs, Xuancheng 242000, Anhui Province, China.
| |
Collapse
|
8
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Cao Z, Zhang T, Tong X. Quality evaluation of chicken soup based on entropy weight method and grey correlation degree method. Sci Rep 2024; 14:13038. [PMID: 38844503 PMCID: PMC11156652 DOI: 10.1038/s41598-024-61667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to develop an assessment framework for evaluating the quality of different chicken soup variants. Three types of chicken soup, traditional chicken soup (TCS), concentrated chicken soup (CCS), and blended chicken soup (BCS), were prepared and analyzed for various physicochemical parameters, including gross protein content, crude fat content, pH level, solid content, viscosity, and chromatic aberration value. Sensory evaluation was also conducted to assess overall quality. Correlation analysis helped identify three key evaluation indicators: gross protein content, L* value (lightness), and b* value (chromatic aberration). The weight assigned to gross protein content was the highest using the entropy weight method (EWM). Moreover, the grey correlation degree method was comprehensively applied to evaluate the chicken soup's quality. This analysis identified TCS and CCS as varieties with superior overall quality, showing a positive correlation with sensory evaluation, consistent with the results of nuclear magnetic resonance (NMR) used in this paper. These results provide theoretical support for assessing comprehensive quality and selecting chicken soup varieties.
Collapse
Affiliation(s)
- Zhongwen Cao
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, 225000, China.
| | - Tanglei Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, 225000, China
| | - XiKui Tong
- Department of Cooking, Yangzhou Tourism Business Vocational School, Jiangsu Union Technical Institute, Yangzhou, 225000, China
| |
Collapse
|
10
|
Fu J, Li S, Xu M, Zhang D, Chen L. Changes in physicochemical properties and formation process of colloidal nanoparticles (CNPs) during the lamb soup stewing. Food Chem 2024; 442:138290. [PMID: 38219561 DOI: 10.1016/j.foodchem.2023.138290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Colloidal nanoparticles (CNPs), as carriers of nutrients, naturally exist in food or form during cooking. In this study, the colloidal properties, structures, rheological properties, and chemical composition location of CNPs were analyzed during 15 min to 5 h lamb soup stewing. With the increasing stewing time, the particle size and absolute value of the zeta potential of CNPs increased, indicating that CNPs became more stable. As the stewing time increased, the blue-shifted Fourier transform infrared spectroscopy absorption peaks and the red-shifted fluorescence spectroscopy absorption peaks certificated the structural changes in CNPs. And α-helix and β-turn content decreased, while β-sheet and random coil content increased in processing, potentially resulting in the opening CNPs structures. In addition, our findings revealed that proteins were encapsulated within the lipids in the inner part, while carbohydrates were dispersed in the outermost layers of the CNPs with a phospholipid bilayer.
Collapse
Affiliation(s)
- Jianing Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Meizhen Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
11
|
Siddiqui SA, Toppi V, Syiffah L. A comparative review on Ayam Cemani chicken - A comparison with the most common chicken species in terms of nutritional values, LCA, price and consumer acceptance. Trop Anim Health Prod 2024; 56:161. [PMID: 38733430 PMCID: PMC11088562 DOI: 10.1007/s11250-024-03980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Chickens are definitely among the most prevalent and broadly distributed domestic species. Among these, Ayam Cemani, also known as black chicken, is a rare Indonesian chicken breed originating from the island of Java. The main characteristic of this breed is that the body, both internally and externally, is entirely black. This is due to a condition named fibro melanosis, in which there is an over accumulation of melanin pigment in body tissues. In addition to this, Ayam Cemani meat results to be also higher in protein content and lower in fat. Moreover, Ayam Cemani meat is also known to have antioxidant and glucose-binding capacities. These properties make it very desirable within the market and consequently very expensive. Their meat is also used traditionally by tribal healers in the treatment of some chronic illnesses. In general, compared to other chicken species, the Ayam Cemani showed an higher genetic resistance to some infectious diseases commonly affecting poultry species. As regard the breeding, Ayam Cemani is a unique breed which may only be raised in specific locations, characterized to be a slowly growing breed with a lower body weight in comparison to the other poultry breeds. Nowadays, due to an improvement in the management, the nutrition and diseases control, it is possible to enhance their productivity. To date, there are not many studies in the literature on the specific breed of Ayam Cemani. For this reason, this review aims to provide a comprehensive overview of all the knowledge of the Ayam Cemani breed, the nutritional composition of the meat and consumer acceptance.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Layyinatus Syiffah
- Nutrition Science Department, Faculty of Medicine, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
12
|
Guan H, Feng C, Tian Y, Leng S, Zhao S, Liu D, Diao X. Effect of fat addition on the characteristics and interfacial behavior of chicken white soup emulsion from chicken skeleton. Food Chem X 2024; 21:101163. [PMID: 38328696 PMCID: PMC10847849 DOI: 10.1016/j.fochx.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
The effects of varying fat additions (0 %, 1.0 %, 1.5 %, 2.0 %, and 2.5 %) on characteristics and interfacial properties of chicken white soup emulsion from stewing chicken skeleton were investigated. The results revealed that the chicken white soup emulsion obtained with the 2.0 % fat addition had smaller D3,2 (1.889 μm), D4,3 (2.944 μm), and higher absolute zeta potential value (23.32 mV). Viscosity values were higher for the 2.0 % fat addition compared to the other treatment groups. Techniques like scanning electron microscopy, laser confocal, and atomic force microscopy demonstrated that oil droplets and particles in the soup were smaller and more evenly dispersed with the 2.0 % fat addition. Moreover, the 2.0 % fat group exhibited higher interfacial protein concentration of 207.56 mg/m2. Lastly, low field NMR images confirmed that the stability of the soup was enhanced with a 2.0 % fat addition. This research offers a foundational understanding for producing highly stable chicken white soup.
Collapse
Affiliation(s)
- Haining Guan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Chunmei Feng
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Yanli Tian
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Siqi Leng
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Shifa Zhao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| | - Xiaoqin Diao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Jinzhou 121013, China
| |
Collapse
|
13
|
Xu X, Bi K, Wu G, Yang P, Li H, Jia W, Zhang C. The Effect of Enzymatic Hydrolysis and Maillard Reaction on the Flavor of Chicken Osteopontin. Foods 2024; 13:702. [PMID: 38472815 DOI: 10.3390/foods13050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
To reveal the changes in the flavor quality of chicken osteopontin (CO) before and after enzymatic hydrolysis and a thermal reaction, the present study was carried out to evaluate the volatile compounds and non-volatile compounds in CO. The results show that the chicken boneset enzymatic solution (CBES) presented a notably richer aroma after the enzymatic hydrolysis treatment. At the same time, the concentrations of the total free amino acids (FAAs) and 5'-nucleotides in the CBES increased dramatically. The ERP (enzymatic reaction paste) scores and the ORC (osteopontin reactive cream) scores were exceptionally high in terms of the umami and salty flavor profiles. As precursors, FAAs and 5'-nucleotides also boosted the Maillard reaction, leading to the generation of wide volatile compounds. Compared to CO, CBES, and ORC, the sensory evaluation showed that ERP scored the highest. In summary, the enzymatic hydrolysis treatment coupled with the Maillard reaction significantly enhanced the flavor profile of CO. These findings offer valuable insights into the high-value utilization of bone by-products, making a significant advancement in the field.
Collapse
Affiliation(s)
- Xiong Xu
- College of Food Science, Southwest University, Chongqing 400715, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ke Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Guan H, Tian Y, Feng C, Leng S, Zhao S, Liu D, Diao X. Migration of Nutrient Substances and Characteristic Changes of Chicken White Soup Emulsion from Chicken Skeleton during Cooking. Foods 2024; 13:410. [PMID: 38338545 PMCID: PMC10855391 DOI: 10.3390/foods13030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The protein and fat in chicken skeleton can be emulsified in a boiling state to form milky white chicken soup. White chicken soup has a delicious taste, good nutritional value, a beautiful color, and volatile flavor compounds. However, cooking time significantly impacts the quality of white chicken soup. Herein, we investigated the influence of cooking time (30, 60, 90, 120, 150, 180, and 210 min) on the migration of nutrient substances and characteristics changes in white chicken soup from chicken skeletons. The results showed that nutrients such as total lipids, water-soluble protein, total sugars, solid matter, and oligopeptides in the chicken skeletons' tissue continuously migrated into the soup during the cooking process. The total nutrient content in the chicken soup was highest after cooking for 180 min. Simultaneously, the white chicken soup obtained after cooking for 180 min had low interfacial tension and high whiteness, viscosity, and storage stability. The high stability index was associated with increased ζ potential and decreased particle size. The contact angle analysis results also indicated that the stability of the white chicken soup was improved when the cooking time reached 180 min. This research provides basic information for the production of high-quality white chicken soup.
Collapse
Affiliation(s)
| | | | | | | | | | - Dengyong Liu
- Meat Innovation Center of Liaoning Province, College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (H.G.); (Y.T.); (S.L.); (X.D.)
| | | |
Collapse
|
15
|
Li W, Wen L, Xiong S, Xiao S, An Y. Investigation of the effect of chemical composition of surimi and gelling temperature on the odor characteristics of surimi products based on gas chromatography-mass spectrometry/olfactometry. Food Chem 2023; 420:135977. [PMID: 37037112 DOI: 10.1016/j.foodchem.2023.135977] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
This study investigated the effects of chemical composition of surimi (prepared by 0, 1, or 2 times of rinsing) and gelling temperature (90 °C and 100 °C) on the odor characteristics of surimi products and the relationship between the chemical composition of surimi and the aroma of surimi products. The once- and twice-rinsed surimi showed a decrease (p < 0.05) of 71.32%, 74.60%, 42.79% and 61.12% in the contents of total amino acids and total fatty acids, respectively. The surimi products prepared with un-rinsed surimi at 90 °C had the highest fish-fragrance score, while those prepared with once-rinsed surimi at 100 °C showed the strongest warmed-over flavor (WOF) and the lowest fish-fragrance score.Gly, Phe, and most of the saturated fatty acids were associated with WOF formation in surimi products, while Leu, Ile, Val, Asp, and unsaturated fatty acids were positively related to their fish-fragrance note.
Collapse
Affiliation(s)
- Wenrong Li
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Li Wen
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Shuting Xiao
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yueqi An
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
16
|
Qi J, Jia CK, Zhang WW, Yan HM, Cai QY, Yao XN, Xu K, Xu Y, Xu WP, Xiong GY, Li MQ. Ultrasonic-assisted stewing enhances the aroma intensity of chicken broth: A perspective of the aroma-binding behavior of fat. Food Chem 2023; 398:133913. [DOI: 10.1016/j.foodchem.2022.133913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
17
|
Changes in stability and volatile flavor compounds of self-emulsifying chicken soup formed during the stewing process. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Lai J, Wu R, Wang J, Wang Y, Zhang X, Zhou L, Zhu Y. Effect of cooking modes on quality and flavor characteristic in Clitocybe squamulose chicken soup. Front Nutr 2022; 9:1048352. [PMID: 36458169 PMCID: PMC9705982 DOI: 10.3389/fnut.2022.1048352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2023] Open
Abstract
The effects of cooking modes [cooking in stainless-steel pot (SS), ceramic pot (CP), and electrical ceramic stewpot (EC) with different stewing time] on chemical compositions, whiteness, 5'-nucleotides, fatty acids (FAs), sensory quality and flavor substances in chicken soup added Clitocybe squamulose (Pers.) Kumm (a natural edible fungus) were investigated. The results showed that CP chicken soup had higher soluble solid matter (5.83 g/100 mL), total sugar (2.38 mg/mL), crude protein (7.58 g/100 g), and 5'-nucleotides (325.53 mg/mL) than EC and SS chicken soups. 48 volatile flavor compounds, mainly aldehydes and alkanes, were found by gas chromatography-mass spectrometry (GC-MS), and the characteristic flavor substances were identified by Principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Hexanal, (E,E)-2,4-decadienal and 3-methyl-hexadecane were the most abundant differential volatile compounds in the CP chicken soup. Additionally, the results of sensory evaluation showed that the chicken soup cooked in CP had the higher values of aroma, taste, and overall acceptability. Our results indicate that CP mode might be the best option for cooking chicken soup. This study provides a new perspective in the improvement of the quality and flavor of chicken soup by using an appropriate cooking mode. Theoretical support for the use of various cooking modes is also discussed to improve the quality of chicken soup at home and in the industry.
Collapse
Affiliation(s)
- Jing Lai
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyun Wu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Ji Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Liyuan Zhou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
19
|
Enrichment of taste and aroma compounds in braised soup during repeated stewing of chicken meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Thermal-assisted stirring as a new method for manufacturing o/w emulsions stabilized by gelatin-arginine complexes. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Physicochemical properties and aroma release of gelatin-stabilized rapeseed oil-in-water emulsions as affected by pH. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Qi J, Yan HM, Xu Y, Peng YL, Jia CK, Ye M, Fan ZH, Xiong GY, Mei L, Xu XL. Effect of short-term frozen storage of raw meat on aroma retention of chicken broth: A perspective on physicochemical properties of broth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wang K, Wang X, Zhang L, Chen A, Yang S, Xu Z. Identification of novel biomarkers in chilled and frozen chicken using metabolomics profiling and its application. Food Chem 2022; 393:133334. [PMID: 35653989 DOI: 10.1016/j.foodchem.2022.133334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 01/15/2023]
Abstract
Merchants used frozen chicken to pass it off as chilled chicken, resulting in Economically Motivated Adulteration incidents. Here in this work, firstly, we established OPLS-DA and OPLS-R models based on metabolomics to obtain differential metabolites in chilled and frozen chicken (with different storage times), the PLS-DA model based on above differential compounds could achieve accuracy of 91% (training) and 100% (testing) for the adulteration identification of uncooked chilled and frozen chicken. Secondly, cooking study was carried out to identify the discrepancy of the cooked chilled and frozen chicken. Higher nicotinamide, o-acetyl-l-carnitine, hypoxanthine, and IMP levels indicated better nutrition quality and more desirable flavor in chilled chicken nuggets, while higher bitter and sour peptides in frozen chicken nuggets indicated the loss of freshness.
Collapse
Affiliation(s)
- Kewen Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xue Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Du C, Qi J, Yang C, Zhang Q, Liu D. Enrichment of taste and aroma perceptions in chicken meat stewed in braised soup used repeatedly. J Food Sci 2022; 87:2563-2577. [PMID: 35584965 DOI: 10.1111/1750-3841.16180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Flavor enrichment of sauce-braised chicken creates a popular umami taste and aroma. In order to preliminarily reveal the enrichment of taste and aroma compounds of sauce-braised meat products processed with braised soup used repeatedly, the system containing only chicken and chicken soup was designed to simulate the process of repeated stewing. Free amino acids, 5-nucleotides, fatty acids, and volatile compounds in stewed chicken were determined, and taste and aroma profiles were evaluated using an electronic tongue (E-tongue) and an electronic nose (E-nose), respectively. As repeated stewing times increased, the total free amino acid content increased from 514.37 mg/100 g to 721.33 mg/100 g, and the contents of 5'-inosine monophosphate, 5'-guanosine monophosphate, and 5'-adenosine monophosphate increased by approximately 20%. Meanwhile, the relative content of saturated fatty acids increased, and the relative content of monounsaturated fatty acids decreased significantly. Oleic acid, linoleic acid, and palmitoleic acid accounted for more than 80% of the total fatty acid content. A total of 15 aroma-active compounds were identified during repeated stewing, and their concentrations increased by more than 40%, especially for monounsaturated alkenals. Within 10 times of repeated stewing, the taste and aroma compounds were enriched because of a decrease in the concentration difference of taste substances and an increase in the flavor-adsorption capacity of fat, which was also consistent with the results from the E-nose and E-tongue. The taste and aroma of stewed chicken tended to remain constant after 10 times of repeated stewing of braised soup. The obtained information can provide guidelines for regulating the aroma and taste of sauce-braised chicken. PRACTICAL APPLICATION: The fat level of stewed chicken and the difference in concentration between stewed meat and braised soup were important potential factors that could be employed to enhance the flavor of stewed meat.
Collapse
Affiliation(s)
- Chao Du
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Qi
- College of Food Science and Technology, Bohai University, Jinzhou, China.,Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cong Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Qingyong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Wu J, Zhang M, Zhang L, Liu Y. Effect of ultrasound combined with sodium bicarbonate pretreatment on the taste and flavor of chicken broth. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu China
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Zhongshan Guangdong China
| |
Collapse
|
26
|
Kim HJ, Roy S, Rhim JW. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of soybean oil (20%, v/w) and extraction time (30, 60, or 90 min) on volatile compounds in cinnamon bark extract were investigated. The relative content and odor activity values (OAVs) of volatile compounds were measured by Gas Chromatography-Mass Spectrometer (GC-MS). The results showed that a total of 26 and 27 volatile compounds were detected in the water extract and the aqueous phase of the water/oil extraction, respectively. Hexanal, nonanal, cinnamaldehyde, D-limonene, 1-octen-3-ol, linalool, and anethole were the major aroma-active compounds, accounting for 85% of the total substance content. Cinnamaldehyde had the highest contribution rate to the aroma of the water extract (26%), whereas anethole has the highest contribution rate to the aroma of the oil/water extract (30%). Whether or not the extraction medium contained soybean oil, the relative content of aroma-active compounds in the aqueous phase decreased with increased extraction time, and the relative content of these compounds in the aqueous phase further decreased when soybean oil was present. This should be due to the high hydrophobicity of these compounds, which were prone to dissolving in the oil layer during the extraction process, resulting in a decrease in the relative content of aroma-active compounds in the aqueous phase.
Collapse
|
28
|
Xu Y, Xie X, Zhang W, Yan H, Peng Y, Jia C, Li M, Qi J, Xiong G, Xu X, Zhou G. Effect of stewing time on fatty acid composition, textural properties and microstructure of porcine subcutaneous fat from various anatomical locations. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Chen C, Zhang M, Xu B, Chen J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- R & D Center, Yangzhou Yechun Food Production & Distribution Co, Yangzhou, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Baoguo Xu
- R & D Center, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Chen
- R & D Center, Haitong Food Group Co, Cixi, Zhejiang, China
| |
Collapse
|
30
|
Qi J, Xu Y, Zhang W, Xie X, Xiong G, Xu X. Short-term frozen storage of raw chicken meat improves its flavor traits upon stewing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Qi J, Zhang WW, Xu Y, Xie XF, Xiong GY, Xu XL, Zhou GH, Ye M. Enhanced flavor strength of broth prepared from chicken following short-term frozen storage. Food Chem 2021; 356:129678. [PMID: 33812185 DOI: 10.1016/j.foodchem.2021.129678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/01/2022]
Abstract
This study investigated the effect of frozen storage periods (0, 2, 4, 6, or 8 weeks) of raw meat and stewing on the flavor of chicken broth. With the increased storage duration of frozen raw material, the contents of the free amino acids, nucleotides and mineral elements in the broth decreased significantly, especially within the first 4 weeks, and then increased significantly. Meanwhile, the volatile compounds showed the reverse trend. The results from the E-nose, E-tongue and sensory evaluation indicated a progressive difference in overall flavor profiles between the samples. The sensory scores of the meaty and fatty traits reached a maximum as raw chicken meat was stored for 4 weeks at -18 °C, which should be related to the increased contents of aldehydes and 2-pentyl furan. Overall, the limited storage duration of frozen raw meat can enhance the flavor of chicken broth.
Collapse
Affiliation(s)
- Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Wen-Wen Zhang
- Anhui Qingsong Food Company Limited, Hefei 230088, China
| | - Ying Xu
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Fei Xie
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guo-Yuan Xiong
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing-Lian Xu
- Laboratory of Meat Processing and Quality Control of Ministry of Education, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guang-Hong Zhou
- Laboratory of Meat Processing and Quality Control of Ministry of Education, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Ye
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|