1
|
Peng J, Jia W, Zhu J. Advanced functional materials as reliable tools for capturing food-derived peptides to optimize the peptidomics pre-treatment enrichment workflow. Compr Rev Food Sci Food Saf 2025; 24:e13395. [PMID: 39042377 DOI: 10.1111/1541-4337.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.
Collapse
Affiliation(s)
- Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
2
|
Kobayashi K, Takada N, Matsubara Y, Okuhara H, Oosaka M. Lactic acid fermentation of kamaboko, a heated Alaska pollock surimi, enhances angiotensin I-converting enzyme inhibitory activity via fish protein hydrolysis. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38281752 DOI: 10.2323/jgam.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.
Collapse
Affiliation(s)
| | | | - Yuki Matsubara
- Food Research Center, Niigata Agricultural Research Institute
| | - Hiroaki Okuhara
- Food Research Center, Niigata Agricultural Research Institute
| | | |
Collapse
|
3
|
Yavuz M, Çelikezen FÇ, Firat M, Baş Z, Türkoğlu V. The investigation of hawthorn ( Crataegus orientalis) plant's inhibition effect on angiotensin converting enzyme and in silico studies. Nat Prod Res 2024:1-7. [PMID: 38440881 DOI: 10.1080/14786419.2024.2324467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Abstract
Hawthorn plant is used among people due to its cardiovascular, anti-inflammatory, and antihistamine properties. But no scientific study has been done about Crataegus orientalis (Mill.) M.Bieb. The presented study was planned to determine the effects of ethanol and n-hexane extracts of Crataegus orientalis leaves on human plasma ACE enzyme. In the study, the effect of plant extracts on ACE was studied by the spectrophotometric method. The chemical composition of the plant extracts was determined by HPLC-DAD analyses. In addition, molecular doking and ADME prediction studies were carried out. As a result, the obtained data showed that Crataegus orientalis could have an important place in the pharmaceutical industry and drug discovery studies, as it supports the traditional use of Crataegus orientalis as hypotensive. The results of the molecular docking studies revealed that the interactions of the selected compounds with the human ACE enzyme caused inhibition.
Collapse
Affiliation(s)
- Mahmut Yavuz
- Bitlis Eren University, Department of Chemistry, Graduate Education Institute, Bitlis, Turkey
| | - Fatih Çağlar Çelikezen
- Department of Chemistry, Faculty of Science and Letter, Bitlis Eren University, Bitlis, Turkey
| | - Mehmet Firat
- Department of Biology, Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey
| | - Zehra Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Van Yüzüncü Yıl University, Van, Turkey
| | - Vedat Türkoğlu
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
4
|
Wu N, Li P, Shuang Q, Wuhanqimuge. Screening and molecular dynamics simulation of ACE inhibitory tripeptides derived from milk fermented with Lactobacillus delbrueckii QS306. Food Funct 2024; 15:2655-2667. [PMID: 38362628 DOI: 10.1039/d3fo03320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peptides in milk fermented with Lactobacillus delbrueckii QS306 before and after ultrahigh pressure treatment were identified using proteomics. Subsequently, 16 stable tripeptides were screened out based on activity score prediction, PeptideCutter analysis, and hydrophobicity calculations. Among them, WRP, WSR, and YRP showed the best angiotensin-converting enzyme (ACE) inhibitory activity, and their semi-inhibitory concentrations were 46.707, 300.121, and 89.555 μM, respectively. WRP and WSR were competitive inhibitors, whereas YRP was non-competitive. Gastrointestinal simulation revealed that WRP and YRP had better gastrointestinal stability. The values of RMSD, ΔGbind, ΔGpol, and RSMF obtained from molecular dynamics simulation indicated that the interaction of WRP and ACE was stable. Thus, Lactobacillus delbrueckii QS306-fermented milk can serve as an important source of ACE inhibitory peptides both before and after ultrahigh pressure treatment. The strategy of in silico screening, activity evaluation, and molecular dynamics simulation adopted in this study can be applied to the large-scale screening of novel peptides with high ACE inhibitory activity.
Collapse
Affiliation(s)
- Nan Wu
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Puyu Li
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Quan Shuang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Wuhanqimuge
- Experimental center, Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, Inner Mongolia, 010017, People's Republic of China.
| |
Collapse
|
5
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
6
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res Int 2023; 174:113640. [PMID: 37986483 DOI: 10.1016/j.foodres.2023.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
8
|
Wang J, Shao B, Li J, Wang Z, Zhang M, Jia L, Yu P, Ma C. Identification and In Silico Analysis of ACE-Inhibitory Peptides Derived from Milk Fermented by Lacticaseibacillus paracasei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12462-12473. [PMID: 37578765 DOI: 10.1021/acs.jafc.2c09148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.
Collapse
Affiliation(s)
- Jiaxu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyue Shao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhimin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mixia Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Guron GKP, Qi PX, McAnulty MJ, Renye JA, Miller AL, Oest AM, Wickham ED, Harron A. Differential behavior of Lactobacillus helveticus B1929 and ATCC 15009 on the hydrolysis and angiotensin-I-converting enzyme inhibition activity of fermented ultra-high temperature milk and nonfat dried milk powder. J Dairy Sci 2023:S0022-0302(23)00219-9. [PMID: 37164857 DOI: 10.3168/jds.2022-22842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
Consumers' growing interest in fermented dairy foods necessitates research on a wide array of lactic acid bacterial strains to be explored and used. This study aimed to investigate the differences in the proteolytic capacity of Lactobacillus helveticus strains B1929 and ATCC 15009 on the fermentation of commercial ultra-pasteurized (UHT) skim milk and reconstituted nonfat dried milk powder (at a comparable protein concentration, 4%). The antihypertensive properties of the fermented milk, measured by angiotensin-I-converting enzyme inhibitory (ACE-I) activity, were compared. The B1929 strain lowered the pH of the milk to 4.13 ± 0.09 at 37°C after 24 h, whereas ATCC 15009 needed 48 h to drop the pH to 4.70 ± 0.18 at 37°C. Two soluble protein fractions, one (CFS1) obtained after fermentation (acidic conditions) and the other (CFS2) after the neutralization (pH 6.70) of the pellet from CFS1 separation, were analyzed for d-/l-lactic acid production, protein concentration, the degree of protein hydrolysis, and ACE-I activity. The CFS1 fractions, dominated by whey proteins, demonstrated a greater degree of protein hydrolysis (7.9%) than CFS2. On the other hand, CFS2, mainly casein proteins, showed a higher level of ACE-I activity (33.8%) than CFS1. Significant differences were also found in the d- and l-lactic acid produced by the UHT milk between the 2 strains. These results attest that milk casein proteins possessed more detectable ACE-I activity than whey fractions, even without a measurable degree of hydrolysis. Findings from this study suggest that careful consideration must be given when selecting the bacterial strain and milk substrate for fermentation.
Collapse
Affiliation(s)
- Giselle K P Guron
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038.
| | - Phoebe X Qi
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - Michael J McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - John A Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - Edward D Wickham
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| | - Andrew Harron
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038
| |
Collapse
|
10
|
Naibaho J, Jonuzi E, Butula N, Korzeniowska M, Föste M, Sinamo KN, Chodaczek G, Yang B. Fortification of milk-based yogurt with protein hydrolysates from brewers' spent grain: Evaluation on microstructural properties, lactic acid bacteria profile, lactic acid forming capability and its physical behavior. Curr Res Food Sci 2022; 5:1955-1964. [PMID: 36312882 PMCID: PMC9596745 DOI: 10.1016/j.crfs.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Current study aimed to evaluate the utilization of protein from brewers' spent grain (BSGP) on microstructural formation as well as rheological behavior, acidity and lactic acid bacteria (LAB) profile during the refrigerated storage. Three different BSGPs were provided including BSGP-C (extracted without enzymatic hydrolysis), BSGP-P (with protease), and BSGP-PF (with protease co-incubated with flavourzyme). The results demonstrated that BSGPs improved lactic acid forming capability in yogurt production to a higher level than milk-protein based enrichment. BSGPs improved the growth and survival of lactic acid bacteria (LAB), particularly BSGP-P in improving the survival rate of L. bulgaricus. Confocal laser scanning microscopy showed that BSGP-P generated a denser, softer and more homogenous surface appearance as well as showed the tendency to form more compact networks; had a weaker initial gel forming, increased and preserved the consistency of the yogurt during the storage. In conclusion, BSGPs in yogurt improved and preserved the textural properties, consistency, acidity and lactic acid bacteria. Protease-extracted preserve the flow behavior of yogurt Protease-extracted soften the microstructural surface of the matrices BSG protein-rich extracts improve the survival of lactic acid bacteria
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, State University of Tetova, 1200, Tetovo, Macedonia
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Karina Nola Sinamo
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sumatera Utara, 20155, Medan, Indonesia
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
11
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Chodaczek G, Yang B. The roles of brewers' spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Curr Res Food Sci 2022; 5:1195-1204. [PMID: 35992631 PMCID: PMC9382424 DOI: 10.1016/j.crfs.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetova, 1200, Tetovo, Macedonia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
12
|
Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products including Commercialization and Legislation. Foods 2022; 11:foods11091270. [PMID: 35563993 PMCID: PMC9101964 DOI: 10.3390/foods11091270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Recent research has revealed the potential of peptides derived from dairy products preventing cardiovascular disorders, one of the main causes of death worldwide. This review provides an overview of the main cardioprotective effects (assayed in vitro, in vivo, and ex vivo) of bioactive peptides derived from different dairy processing methods (fermentation and enzymatic hydrolysis) and dairy products (yogurt, cheese, and kefir), as well as the beneficial or detrimental effects of the process of gastrointestinal digestion following oral consumption on the biological activities of dairy-derived peptides. The main literature available on the structure–function relationship of dairy bioactive peptides, such as molecular docking and quantitative structure–activity relationships, and their allergenicity and toxicity will also be covered together with the main legislative frameworks governing the commercialization of these compounds. The current products and companies currently commercializing their products as a source of bioactive peptides will also be summarized, emphasizing the main challenges and opportunities for the industrial exploitation of dairy bioactive peptides in the market of functional food and nutraceuticals.
Collapse
|
13
|
Yoon S, Yang G, Kwon H, Lee S. Effects of wheat flour supplemented with soy protein concentrate on the rheology, microstructure and water mobility of protein‐fortified precooked noodles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seong Yoon
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center Sejong University Seoul 05006 Korea
| | - Geunhyuk Yang
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center Sejong University Seoul 05006 Korea
| | - Hyukjin Kwon
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center Sejong University Seoul 05006 Korea
| | - Suyong Lee
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center Sejong University Seoul 05006 Korea
| |
Collapse
|
14
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zhang N, Li F, Zhang T, Li CY, Zhu L, Yan S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03949-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Chen L, Wang L, Li J, Shu G. Antihypertensive potential of fermented milk: the contribution of lactic acid bacteria proteolysis system and the resultant angiotensin-converting enzyme inhibitory peptide. Food Funct 2021; 12:11121-11131. [PMID: 34657947 DOI: 10.1039/d1fo02435c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension has become an increasing health concern given that it is a major risk for cardiovascular disease. Synthetic antihypertensive drugs, including angiotensin-converting enzyme (ACE) inhibitors, effectively control high blood pressure but are associated with unpleasant side effects. Milk fermented by certain lactic acid bacteria (LAB) provides energetic contributions to the management of hypertension, especially the regulation of ACE. LAB are important food-grade microbial organisms that release ACE inhibitory peptides through their unique proteolysis system, which consists of cell-envelope proteinases (CEPs), transporter systems, and intracellular peptidases. Thus, the description of LAB proteolysis system genes and their contributions to ACE inhibitory peptide production is a challenging but promising study. This review provides a survey of LABs with potential ACE inhibitory activity and investigates the research progress of LAB proteolytic systems with an emphasis on the correlation of their components and ACE inhibitory activity. Subsequently, a depiction of the ACE inhibitory peptide action mechanism, structure-activity relationship and bioavailability is presented. The improved functional annotation of LAB proteolytic system genes will provide an excellent framework for future experimental validations of predicted ACE inhibitory activity in fermented milk.
Collapse
Affiliation(s)
- Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Linlin Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Guowei Shu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
17
|
Milk Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic Profile and ACE-Inhibitory Activity. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.
Collapse
|
18
|
Antioxidant and Angiotensin-Converting Enzyme (ACE) Inhibitory Activities of Yogurt Supplemented with Lactiplantibacillus plantarum NK181 and Lactobacillus delbrueckii KU200171 and Sensory Evaluation. Foods 2021; 10:foods10102324. [PMID: 34681373 PMCID: PMC8534810 DOI: 10.3390/foods10102324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
This study was carried out to develop a functional yogurt with inhibitory effects on angiotensin-converting enzyme (ACE) and antioxidant activity using various probiotic strains. Yogurts were prepared using a commercial LAB freeze-dried product and probiotics.Yogurt with only commercial LAB product as control group (C) and probiotics supplemented with Lacticaseibacillus rhamnosus GG KCTC 12202 BP, as a reference group (T1), Lactiplantibacillus plantarum KU15003 (T2), Lactiplantibacillus plantarum KU15031 (T3), Lactiplantibacillus plantarum NK181 (T4), and Lactobacillus delbrueckii KU200171 (T5). The T5 sample showed high antioxidant activities (86.5 ± 0.3% and 39.3 ± 1.0% in DPPH and ABTS assays, respectively). The T4 sample had the highest ACE inhibitory activity (51.3 ± 10.3%). In the case of sensory evaluation, the T4 and T5 samples did not show a significant difference (p > 0.05) compared to the reference group. These results suggest that L. plantarum NK181 and L. delbrueckii KU200171 can be used in the food industry especially dairy to improve health benefits for hypertensive patients.
Collapse
|
19
|
Celik OF, Con AH, Saygin H, Şahin N, Temiz H. Isolation and identification of lactobacilli from traditional yogurts as potential starter cultures. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis. Metabolites 2021; 11:metabo11060333. [PMID: 34063928 PMCID: PMC8224011 DOI: 10.3390/metabo11060333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Geographical origin and authenticity are the two crucial factors that propel overall cheese perception in terms of quality and price; therefore, they are of great importance to consumers and commercial cheese producers. Herein, we demonstrate a rapid, accurate method for discrimination of domestic and import mozzarella cheeses in the Republic of Korea by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The protein profiles' data aided by multivariate statistical analysis successfully differentiated farmstead and import mozzarella cheeses according to their geographical location of origin. A similar investigation within domestic samples (farmsteads/companies) also showed clear discrimination regarding the producer. Using the biomarker discovery tool, we identified seven distinct proteins, of which two (m/z 7407.8 and 11,416.6) were specific in farmstead cheeses, acting as potential markers to ensure authentication and traceability. The outcome of this study can be a good resource in building a database for Korean domestic cheeses. This study also emphasizes the combined utility of MALDI-TOF MS and multivariate analysis in preventing fraudulent practices, thereby ensuring market protection for Korean farmstead cheeses.
Collapse
|
22
|
Bioactive Compounds Produced by the Accompanying Microflora in Bulgarian Yoghurt. Processes (Basel) 2021. [DOI: 10.3390/pr9010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bulgarian yoghurt is associated with health benefits and longevity of consumers. The specific microflora producing bioactive metabolites is responsible for this effect. The present study examines the biodiversity in four homemade yoghurts from regions containing endemic microflora. Metagenome sequencing indicated Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus were predominant in all samples. In addition, yoghurts contained accompanying lactic acid bacteria (LAB) including Lacticaseibacillus paracasei, Lb. helveticus, Limosilactobacillus fermentum, Lb. rhamnosus, Lactococcus lactis, Pediococcus acidilactici, Leuconostoc mesenteroides, and Leuc. pseudomesenteroides. A negligible amount of pollutant strains was found. Twenty-four LAB strains were isolated from the yoghurts and identified. Lb. delbrueckii subsp. bulgaricus strains were genotyped by randomly amplified polymorphic DNA–PCR (RAPD), multi-locus sequence typing (MLST), and pulse field gel electrophoresis (PFGE), which demonstrated their uniqueness and non-commercial origin. To estimate the bioactive metabolites produced by the accompanying microflora, yoghurts fermented by single LAB strains were analyzed using liquid chromatography and mass spectrometry (LC-MS). The fermented samples contained large amounts of free essential amino acids (arginine, citrulline, tryptophan, lysine, and histidine), the neuroprotector indole-3-propionic acid (IPA), and significant quantities of the cyclic antimicrobial peptides cyclo(phenylalanyl-prolyl) and cyclo(leucyloprolyl). The disclosure of these special qualities draws attention to the accompanying microflora as a source of potential probiotic strains that can fortify the yoghurts’ content with bioactive compounds.
Collapse
|
23
|
Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow's Milk: Fermentation and Peptidomics Study. Foods 2020; 10:foods10010017. [PMID: 33374625 PMCID: PMC7822465 DOI: 10.3390/foods10010017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides derived from milk proteins are an active research area. Exhibiting numerous positive physiological effects on digestive, cardiovascular, immune and nervous systems, these peptides thought to be one of the most promising ingredients for functional food. Generally, these peptides are inactive within the parent proteins and can be liberated during milk fermentation by the specific proteolytic systems of various Lactobacillus spp. Here we present the study of milk fermentation by Lactobacillus helveticus NK1, Lactobacillus rhamnosus F and Lactobacillus reuteri LR1 strains. It was demonstrated that the antioxidant activity of the milk fermented by these strains concomitantly increased with the strains’ proteolytic activity. For the angiotensin I-converting enzyme (ACE) inhibitory activity, the same tendency was not observed. Although the proteolytic activity of L. helveticus NK1 was two times higher than that of L. rhamnosus F, the milk fermented by these strains showed comparable ACE inhibition. The analysis of the peptide profiles of the fermented milk samples allowed us to hypothesize that some previously unreported peptides can be produced by L. rhamnosus F. In addition, it was demonstrated that these potential ACE-inhibiting peptides originated from the C-terminus of αS2-casein.
Collapse
|