1
|
Nie CZ, Che J, Wang J, Huang XH, Qin L. Improvement of flavor and inhibition of accompanying harmful substances in roasted fish by different tea pre-marinades. Food Chem 2025; 479:143781. [PMID: 40086395 DOI: 10.1016/j.foodchem.2025.143781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Flavor compounds and harmful substances are critical factors influencing the quality and safety of roasted fish. This study study investigated the effects of six different tea pre-marinades on the flavor and the formation of harmful compounds in roasted fish. The results indicated that pre-marination with tea significantly improved the flavor of the roasted fish. The volatile compounds in the roasted fish increased notably after the fish was marinated with tea, including aldehydes such as hexanal, ketones such as heptan-2-one, and pyrazines. Additionally, the content of free amino acids was significantly elevated (P < 0.05). Furthermore, pre-marination with green, black, and oolong teas effectively reduces harmful substances, such as acrylamide, heterocyclic amines, and polycyclic aromatic hydrocarbons, in roasted fish. This study provides a theoretical foundation for utilizing plant extracts to produce high-quality and safe roasted fish products.
Collapse
Affiliation(s)
- Cheng-Zhen Nie
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Che
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Zeng J, Meng N, Song Y, Fan X, Jiang X, Cong P, Liu Y, Xue C, Xu J. Insight into the mechanism of Maillard reaction and lipids mutually contribute to the flavor release of squid fillets during the drying process. Food Chem 2025; 468:142435. [PMID: 39674014 DOI: 10.1016/j.foodchem.2024.142435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Dried squid fillet is a popular seafood product with a unique flavor. However, its flavor release mechanism is unclear. In this study, volatile compounds (VOCs) were dynamically monitored in thawed squid (TS), salted squid (SS) and dried squid for 6 h (D6) and 24 h (D24). Subsequently, the Maillard reaction (MR) substrate, lipid oxidation index, free fatty acids and lipid profiles were detected. The results showed that the number of VOCs increased from 11 in TS (114.26 μg/kg) to 19 in D24 (1257.89 μg/kg). Besides, MR between glucose/ribose and amino acids (methionine, arginine, etc.) contributed to 3-methyl-butanal, methional and 2,3-butanedione. Meanwhile, lipid oxidation index, lipidomics and correlation analysis indicated that lipids (phosphatidylcholines and triglycerides) containing polyunsaturated fatty acids (C18:2, C20:4, C20:5 and C22:6) were precursors of 3-methyl-butanal, nonanal, heptanal, dodecane and tetradecane. Briefly, lipid hydrolysis, oxidation and MR mutually contributed to the flavor during the drying process of squid fillets.
Collapse
Affiliation(s)
- Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
3
|
Shi H, Jiang M, Zhang X, Xia G, Shen X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res Int 2025; 202:115531. [PMID: 39967124 DOI: 10.1016/j.foodres.2024.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Collagen and its hydrolysates have high bioavailability, good biocompatibility, biodegradability, and biological activity which has meant that they have been widely used in food, medicine, cosmetics, and other industries. Although the properties and applications of collagen have been reviewed recently, few studies have focused on aquatic collagen. To provide readers with a deeper understanding of aquatic collagen, this review addresses the structure and properties of aquatic collagen and compares them with mammalian collagen, as well as the differences between collagen, gelatin, and collagen peptides. In contrast to mammalian collagen, aquatic collagen prevents zoonotic diseases, reduces environmental pollution, improves the utilization of aquatic resources, and facilitates the extraction and separation of active oligopeptides. Additionally, methods for screening functional peptides using in vitro digestion have been introduced. Finally, the review focuses on the applications of collagen and its derivatives in food preservation (packaging films, coatings, additives, and antifreeze peptides), drug delivery (microcapsules, emulsions, nanoparticles, and hydrogels), nutrition, and healthcare.
Collapse
Affiliation(s)
- Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengqi Jiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
4
|
Kim Y, Yoon J, Kim J, Kim H, Park S, Jin HJ, Kwak HW. Multifunctional fructose-crosslinked fibroin film with a developed β-sheet structure for advanced food packaging. Int J Biol Macromol 2025; 286:138370. [PMID: 39643172 DOI: 10.1016/j.ijbiomac.2024.138370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The replacement of petroleum-based plastic packaging with sustainable biopolymer-based materials is still a significant challenge. In the current study, we present a novel approach to impart the multifunctionality of fibroin film through a facile fructose-mediated crosslinking process. By generating a synergistic effect by inducing the transition to β-sheet structure and introducing covalent bonds within the fibroin chain, we effectively controlled the physicochemical characteristics of fibroin film, resulting in exceptional mechanical properties surpassing previous fibroin-based films. The fructose-crosslinked fibroin films exhibited exceptional mechanical properties, including a toughness of 3767.73 kPa and a Young's modulus of 3.06 GPa, surpassing previously reported fibroin-based films. The films also demonstrated excellent optical properties, with 98.49 % transmittance at 700 nm. Moisture stability was significantly enhanced, as the incorporation of fructose reduced water solubility by increasing β-sheet crystallinity and improved bulk water retention through its hygroscopic properties. Additionally, Maillard reaction products formed during crosslinking provided superior ultraviolet shielding and enhanced antioxidant properties, making the films ideal for active food packaging. The multifunctionality of fructose-crosslinked fibroin film significantly improves food storage stability when used in sustainable and eco-friendly food packaging applications. This high-performance fructose-mediated crosslinked fibroin film with a developed β-sheet structure emerges as a promising alternative to petroleum-based materials, offering a sustainable solution for the advanced packaging field.
Collapse
Affiliation(s)
- Yurim Kim
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Juhee Yoon
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Jihyeon Kim
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Hyemin Kim
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyoung-Joon Jin
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea; Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
5
|
Dou P, Wang K, Ding N, Zheng Y, Hong H, Liu H, Tan Y, Luo Y. Sensory improvement and antioxidant enhancement in silver carp hydrolysate using prebiotic oligosaccharides: insights from the Maillard reaction. Food Funct 2024; 15:9888-9902. [PMID: 39254213 DOI: 10.1039/d4fo01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Our previous studies have highlighted the potential of silver carp hydrolysate (SCH) in managing chronic diseases. Unfortunately, its fishy smell and bitter taste limited consumer acceptance. Prebiotic oligosaccharides are often used as dietary supplements, ignoring their role as carbonyl ligands in the Maillard reaction to enhance food's sensory and antioxidant properties. This study aimed to improve SCH's sensory attributes and investigate its physicochemical properties and antioxidant activities using prebiotic oligosaccharides via the Maillard reaction. The results showed that xylo-oligosaccharide (XOS) had the highest reactivity among the oligosaccharides tested, and it greatly enhanced the taste and flavor of SCH, as well as its antioxidant activities (0.45 to 16.5 times). Specifically, XOS effectively reduced the fishy smell and bitter taste, imparting a caramel-like flavor and overall acceptability to SCH. The improved flavor profile was attributed to the increased presence of sulfur-containing and nitrogen oxide volatile flavor compounds, such as benzothiazole, methional, and furans, which also contributed to antioxidant effects. Sensory evaluation results indicated that SCH obtained from papain exhibited a stronger bitter taste than that obtained from alcalase. Additionally, XOS imparted a reddish-brown color to SCH due to the higher browning intensity. This study is the first to demonstrate that XOS in the Maillard reaction can effectively improve the undesirable flavor and taste of SCH while enhancing its antioxidant activities, providing a theoretical basis for developing SCH as a market-acceptable functional food ingredient.
Collapse
Affiliation(s)
- Peipei Dou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kai Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Ding
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd, Xuancheng, Anhui 242100, China
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Liu J, You M, Zhu X, Shi W. Characterization of aroma characteristics of silver carp mince glycated with different reducing sugars. Food Chem X 2024; 22:101335. [PMID: 38595755 PMCID: PMC11002538 DOI: 10.1016/j.fochx.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
The purpose of this study was to investigate the volatile flavor changes in silver carp mince (SCM) gel glycated with different reducing sugars (glucose, L-arabinose, and xylose) based on E-nose, GC-IMS, and sensory evaluation. These results showed that glycation reduced the fishy smell of SCM gel and increased the meaty, toasty, and burnt smell. A total of 10 volatile compounds were considered as characteristic flavor compounds and potential markers. Among them, the main contributors of fishy included hexanal, heptanal, n-nonanal, octanal, etc. Toasty and burnt were mainly related to the production of 3-methylbutanal and furfurol. These results heralded that glycation could be used to improve the volatile flavor of SCM. This research provided a theoretical basis and technical support for glycation in aquatic food flavor quality control, aquatic pre-made food development, and aquatic leisure food processing.
Collapse
Affiliation(s)
- Junya Liu
- School of Life Science and Chemistry, Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, Jiangsu Second Normal University, Nanjing 211200, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min You
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Xueshen Zhu
- School of Life Science and Chemistry, Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, Jiangsu Second Normal University, Nanjing 211200, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Li Y, Zhou L, Zhou W, Zhang H, Qin X, Liu G. Whey protein isolate and inulin-glycosylated conjugate affect the physicochemical properties and oxidative stability of pomegranate seed oil emulsion. Food Chem 2024; 444:138649. [PMID: 38330610 DOI: 10.1016/j.foodchem.2024.138649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Glycosylated protein was obtained by the reaction of whey protein isolate(WPI) with inulin of different polymerization degrees and was used to stabilize a pomegranate seed oil emulsion. The physicochemical and antioxidative properties of the emulsions were assessed, and the impacts of accelerated oxidation on pomegranate seed oil were examined. The interfacial tension of WPI and short-chain inulin (SCI)-glycosylated conjugate (WPI-SCI) gradually decreased with increasing glycosylation reaction time. Emulsions stabilized by WPI-SCI (72 h) were the most stable, with a thick interfacial film on the surface of the droplets. After accelerated oxidation for 72 h, WPI-SCI inhibited the oxidation of oil in the emulsion. GC-IMS results showed that the production of harmful volatile components in oil was inhibited, and the peroxide strength was less than 30 mmol/kg oil. This study contributes to understanding of stable storage of lipids.
Collapse
Affiliation(s)
- Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lian Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenhao Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China.
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| |
Collapse
|
8
|
Hu Y, Bian Q, Zi Y, Shi C, Peng J, Zheng Y, Wang X, Zhong J. Molecular modification of low-dissolution soy protein isolates by anionic xanthan gum, neutral guar gum, or neutral konjac glucomannan to improve the protein dissolution and stabilize fish oil emulsion. Int J Biol Macromol 2024; 267:131521. [PMID: 38608976 DOI: 10.1016/j.ijbiomac.2024.131521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower β-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher β-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.
Collapse
Affiliation(s)
- Yaxue Hu
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiqi Bian
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiawei Peng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
9
|
Han L, Zhai R, Shi R, Hu B, Yang J, Xu Z, Ma K, Li Y, Li T. Impact of cod skin peptide-ι-carrageenan conjugates prepared via the Maillard reaction on the physical and oxidative stability of Antarctic krill oil emulsions. Food Chem X 2024; 21:101130. [PMID: 38292679 PMCID: PMC10826608 DOI: 10.1016/j.fochx.2024.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
This research aimed to construct an emulsifier by the Maillard reaction at various times using cod fish skin collagen peptide (CSCP) and ι-carrageenan (ι-car) to stabilize an Antarctic krill oil (AKO) emulsion. This emulsion was then investigated for physicochemical stability, oxidative stability, and gastrointestinal digestibility. The emulsion stability index and emulsifying activity index of Maillard reaction products (MRPs) were increased by 36.32 % and 66.30 %, respectively, at the appropriate graft degree (25.58 %) compared with the mixture of ι-car and CSCP. In vitro digestibility suggested the higher release of free fatty acids (FFAs) of 10d-MRPs-AKO-emulsion, and the highest bioavailability of AST in 10d-MRPs-AKO was found to be 28.48 %. The findings of this study showed the potential of MRPs to improve peptide function, serve as delivery vehicles for bioactive chemicals, and possibly serve as a valuable emulsifier to be used in the food industry.
Collapse
Affiliation(s)
- Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Ruiyi Zhai
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Ruitao Shi
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW United Kingdom
| | - Zhe Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Kun Ma
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Yingmei Li
- Linghai Dalian Seafoods Breeding Co., Ltd, Jinzhou, Liaoning 121209, China
| | - Tingting Li
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
10
|
Zhang J, Rui C, Jia C. An interpenetrating polymer networks based on polydivinylbenzene/aminated polyglycidyl methacrylate with better decolorization performance toward reducing sugar solution. Food Chem 2024; 434:137483. [PMID: 37722338 DOI: 10.1016/j.foodchem.2023.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The separation of valuable sugar components from a xylose mother liquor (XML) requires a pre-decolorization over a resin, however the market-available resins show a low performance. To overcome this drawback, an interpenetrating polymer network (IPN) resin was designed for efficiently removing the non-sugar impurities from an XML. The prepared IPN resin showed good decolorization performance for the XML, and the decolorization effect of the XML on the resin modified with a short-chain amination reagent was better. The adsorption capacity of the resin for phenols was significantly improved after an amination-modification, but that for furfural remained constant. The theoretical study confirmed that good decolorization effect of the XML on that resin was mainly ascribed to the synergistic action of adsorption forces, such as π-π stacking and hydrogen bonding.
Collapse
Affiliation(s)
- Junwei Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Changchun Rui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Caijing Jia
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
12
|
Fu JJ, Yu JX, He FY, Huang YN, Wu ZP, Chen YW. Physicochemical and functional characteristics of glycated collagen protein from giant salamander skin induced by ultrasound Maillard reaction. Int J Biol Macromol 2024; 254:127558. [PMID: 37865368 DOI: 10.1016/j.ijbiomac.2023.127558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Chinese giant salamander skin collagen (CGSSC) was successfully conjugated with glucose (Glu)/xylose (Xy) by ultrasound Maillard reaction (MR) in nature deep eutectic solvents (NADES). The effects of ultrasound and reducing sugar types on the degree graft (DG) of MR products (MRPs), as well as the influence of DG on the structure and functional properties of MRPs were investigated. The results indicated that the ultrasound assisted could markedly enhance the MR of CGSSC, and low molecular weight reducing sugars were more reactive in MR. The ultrasound MR significantly changed the microstructure, secondary and tertiary structures of CGSSC. Moreover, the free sulfhydryl content of MRPs were increased, thus enhancing the surface hydrophobicity, emulsifying properties and antioxidant activity, which were positively correlated with DG. These findings provided theoretical insights into the effects of ultrasound assisted and different sugar types on the functional properties of collagen induced by MR.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jin-Xiu Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yang-Na Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Zhi-Ping Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, Zhejiang 323000, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
13
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Gao P, Zhang W, Zhao X, Xu C, Pang X, Fauconnier ML, Zhang S, Lv J. The effect of Maillard reaction on flavour development of protein hydrolysates from cheese. Food Chem 2023; 437:137569. [PMID: 39491246 DOI: 10.1016/j.foodchem.2023.137569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/20/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2024]
Abstract
This study aims to explore the effect of the Maillard reaction (MR) on flavour development of cheese protein hydrolysates. In addition, the effects of proteolysis, lipolysis, and the degreasing process on the MR have been explored. Cheese protein hydrolysates subjected to different treatments were heated with glucose and xylose, and their amino reactant components, colour parameters, and volatile compounds were determined. The results showed that the MR significantly affected the content of free amino acids, peptides, and volatile flavours of cheese protein hydrolysates. Peptides below 1500 Da and most of the free amino acids were the important amino reactants during the MR. 3-Ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine, 2-undecanone and 2-heptanone were the key volatile components of the MR products. The results also indicated that N-terminal amino acids of the peptide chain were easier to be reacted than C-terminal amino acids and thus produce a pyrazine-like flavour in the MR.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenyuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Xiaoxuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marie-Laure Fauconnier
- Laboratoire de Chimie des Molecules Naturelles (LCMN), Gembloux Agro-Bio Tech, Universite de Liege, 2, Passage des Deportes, B-5030 Gembloux, Belgium
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
16
|
Rodrigues CV, Sousa RO, Carvalho AC, Alves AL, Marques CF, Cerqueira MT, Reis RL, Silva TH. Potential of Atlantic Codfish ( Gadus morhua) Skin Collagen for Skincare Biomaterials. Molecules 2023; 28:molecules28083394. [PMID: 37110628 PMCID: PMC10146550 DOI: 10.3390/molecules28083394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Collagen is the major structural protein in extracellular matrix present in connective tissues, including skin, being considered a promising material for skin regeneration. Marine organisms have been attracting interest amongst the industry as an alternative collagen source. In the present work, Atlantic codfish skin collagen was analyzed, to evaluate its potential for skincare. The collagen was extracted from two different skin batches (food industry by-product) using acetic acid (ASColl), confirming the method reproducibility since no significant yield differences were observed. The extracts characterization confirmed a profile compatible with type I collagen, without significant differences between batches or with bovine skin collagen (a reference material in biomedicine). Thermal analyses suggested ASColl's native structure loss at 25 °C, and an inferior thermal stability to bovine skin collagen. No cytotoxicity was found for ASColl up to 10 mg/mL in keratinocytes (HaCaT cells). ASColl was used to develop membranes, which revealed smooth surfaces without significative morphological or biodegradability differences between batches. Their water absorption capacity and water contact angle indicated a hydrophilic feature. The metabolic activity and proliferation of HaCaT were improved by the membranes. Hence, ASColl membranes exhibited attractive characteristics to be applied in the biomedical and cosmeceutical field envisaging skincare.
Collapse
Affiliation(s)
- Cristina V Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C Carvalho
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana L Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Wen F, Zeng C, Yang Y, Xu T, Wang H, Wang S. Sensory attributes and functional properties of maillard reaction products derived from the crassosotrea gigas (Ostrea rivularis gould) enzymatic hydrolysate and xylose system. Heliyon 2023; 9:e14774. [PMID: 37012907 PMCID: PMC10066532 DOI: 10.1016/j.heliyon.2023.e14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
To improve the flavor of Ostrea rivularis Gould, enzymatic hydrolysis was conducted and xylose-OEH Maillard reaction products were prepared. Then, their physicochemical properties and metabolites were determined by UHPLC-MS-MS, and volatile compounds were determined by GC-MS to investigate the changes. The results showed that His, Gln, Lys, Asp, and Cys were the major amino acids consumed. After being heated at 120 °C for up to 150 min, the DPPH (2,2-Diphenyl-1-picrylhydrazyl) was 85.32 ± 1.35% and the reducing capacity was 1.28 ± 0.12. Both were the highest in the groups. Additionally, 45 volatile compounds, including 2-ethyl-5-methyl-pyrazine and 2-ethyl-3,5-dimethyl-pyrazine, and 678 compounds were identified. We also found that 18 metabolites with significant differences (VIP ≥2) were differential metabolites, which involved lipid oxides and amino acid derivatives. The content of lipids favored the regulation of Maillard products and affected the lower threshold of the flavor of aldehydes, which contributed to the flavor and antioxidant activity. These results suggested the potential of xylose-OEH MRPs as a natural antioxidant for further processing oysters.
Collapse
|
18
|
Li Q, Li W, Li L, Zong X, Coldea TE, Yang H, Zhao H. Enhancing the foaming properties of brewer's spent grain protein by ultrasound treatment and glycation reaction. Food Funct 2023; 14:2781-2792. [PMID: 36861319 DOI: 10.1039/d2fo03734c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The denaturation state and relatively poor solubility of brewer's spent grain protein (BSGP) have limited its industrial application. Ultrasound treatment and glycation reaction were applied to improve the structural and foaming properties of BSGP. The results showed that all ultrasound, glycation, and ultrasound-assisted glycation treatments increased the solubility and surface hydrophobicity of BSGP while decreasing its zeta potential, surface tension and particle size. Meanwhile, all these treatments resulted in a more disordered and flexible conformation of BSGP, as observed by CD spectroscopy and SEM. After grafting, the result of FTIR spectroscopy confirmed the covalent binding of -OH between maltose and BSGP. Ultrasound-assisted glycation treatment further improved the free SH and S-S content, which might be due to -OH oxidation, indicating that ultrasound promoted the glycation reaction. Furthermore, all these treatments significantly increased the foaming capacity (FC) and foam stability (FS) of BSGP. Notably, BSGP treated with ultrasound showed the best foaming properties, increasing the FC from 82.22% to 165.10% and the FS from 10.60% to 131.20%, respectively. In particular, the foam collapse rate of BSGP treated with ultrasound-assisted glycation was lower than that of ultrasound or traditional wet-heating glycation treatment. The enhanced hydrogen bonding ability and hydrophobic interaction between protein molecules caused by ultrasound and glycation might be responsible for the improved foaming properties of BSGP. Thus, ultrasound and glycation reactions were efficient methods for producing BSGP-maltose conjugates with superior foaming properties.
Collapse
Affiliation(s)
- Qing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Li Li
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Xuyan Zong
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Cui F, Wang Q, Han L, Wang D, Li J, Li T, Li X. Effect of Maillard conjugates of peptides and polydextrose on Antarctic krill oil emulsion stability and digestibility. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Wang Y, Luan J, Tang X, Zhu W, Xu Y, Bu Y, Li J, Cui F, Li X. Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod ( Gadus morhua). Food Funct 2023; 14:1510-1519. [PMID: 36651848 DOI: 10.1039/d2fo03776a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Umami peptides have currently become the research focus in the food umami science field and the key direction for umami agent development. This is because umami peptides have good processing characteristics, umami and nutritional values. We here used virtual screening (including online enzymolysis through ExPASy PeptideCutter, bioactivity screening using the PeptideRanker, toxicity and physicochemical property prediction using Innovagen and ToxinPred software), molecular docking, and electronic tongue analysis to identify umami peptides generated from Atlantic cod myosin. Twenty-three putative umami peptides were screened from the myosin. Molecular docking results suggested that these 23 peptides could enter the binding pocket in the T1R3 cavity, wherein Glu128 and Asp196 were the main amino acid residues, and that hydrogen bonding and electrostatic interactions were the main binding forces. Twelve synthetic peptides tested on the electronic tongue exhibited umami taste and a synergistic effect with monosodium glutamate (MSG). Among them, GGR, AGCD, and SGDAW had higher umami intensities than the other peptides, while SGDAW and NDDGW exhibited stronger umami-enhancing capabilities in 0.1% MSG solution. This study offers a method for the rapid screening of umami peptides from marine protein resources and places the foundation for their application in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China. .,School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Junjia Luan
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Xuhua Tang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Fangchao Cui
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
21
|
Insights into lipid oxidation and free fatty acid profiles to the development of volatile organic compounds in traditional fermented golden pomfret based on multivariate analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ye Y, Dai S, Zhang H, He S, Hu W, Cao X, Wei Z. Ultrasound-Assisted Preparation of Maillard Reaction Products Derived from Hydrolyzed Soybean Meal with Meaty Flavor in an Oil-In-Water System. Molecules 2022; 27:molecules27217236. [PMID: 36364060 PMCID: PMC9655089 DOI: 10.3390/molecules27217236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
In the present work, we prepared Maillard reaction products (MRPs) derived from enzyme hydrolyzed soybean meal with ultrasound assistance in an oil-(oxidized lard)-in-water system (UEL-MRPs) or oil-free system (UN-MRPs), and the effect of ultrasound on the properties of the obtained MRPs was evaluated. The analysis of fatty acids in lard with different treatments showed that ultrasound can generate more unsaturated fatty acids in the aqueous phase. The UV–Vis absorbances of UEL-MRPs, UN-MRPs, and MRPs obtained in an oil-in-water system (EL-MRPs) and MRPs obtained in an oil-free system (N-MRPs) at 294 and 420 nm indicated that ultrasound could increase the amount of Maillard reaction intermediates and melanoids in the final products of the Maillard reaction. This was in line with the result obtained from color change determination—that ultrasound can darken the resultant MRPs. Volatile analysis showed ultrasound can not only increase the number of volatile substances, but also greatly increase the composition of volatile substances in UEL-MRPs and UN-MRPs, especially the composition of those contributing to the flavor of the MRPs, such as oxygen-containing heterocycles, sulfur-containing compounds, and nitrogen-containing heterocycles. Descriptive sensory evaluation revealed that UN-MRPs and UEL-MRPs had the highest scores in total acceptance, ranking in the top two, and UEL-MRPs had the strongest meaty flavor among these four kinds of MRPs. Furthermore, the measurements of antioxidant activities, including DPPH radical-scavenging activity, hydroxyl radical scavenging ability, and ferric ion reducing antioxidant power, were conducted, showing that UN-MRPs exhibited the highest antioxidant activity among all the MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengquan Dai
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongyan Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd., Huangshan 245000, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Correspondence: (X.C.); (Z.W.)
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Correspondence: (X.C.); (Z.W.)
| |
Collapse
|
24
|
Sun K, Dai Z, Hong W, Zhao J, Zhao H, Luo J, Xie G. Effects of Maillard Reaction on Volatile Compounds and Antioxidant Capacity of Cat Food Attractant. Molecules 2022; 27:7239. [PMID: 36364065 PMCID: PMC9658501 DOI: 10.3390/molecules27217239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 12/21/2024] Open
Abstract
In this study, self-made cat food attractant was prepared by Maillard reaction using hydrolysate of grass carp waste as raw material and glucose and cysteine hydrochloride as substrate. Its volatile compounds, antioxidant capacity, and pet palatability were investigated. The volatile compounds of attractants were analyzed using gas chromatography-mass spectrometry (GC-MS) which showed that alcohols and aldehydes were the most volatile in self-made attractants, accounting for 34.29% and 33.52%, respectively. Furthermore, Maillard reaction could significantly increase the antioxidant activity of self-made attractant, including scavenging activity on OH and DPPH free radicals as well as the chelating ability of Fe2+. The acceptance and palatability of two kinds of cat food were studied by adding 3% self-made or commercial attractants. The results of this study also found that both attractants could remarkably improve the intake rate of cat food. However, the self-made group was significantly less than the commercial group in first smell, first bite, and feeding rate, which might be because of the absence of umami ingredients and spices in self-made attractants.
Collapse
Affiliation(s)
- Kekui Sun
- College of Tourism, Huangshan University, Huangshan 245041, China
| | - Zhaoqi Dai
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Wenlong Hong
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Jianying Zhao
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Hang Zhao
- College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Ji Luo
- College of Life Science, Anhui Normal University, Wuhu 241000, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangjie Xie
- Zhenjiang Zhinong Food Limited Company, Zhenjiang 212000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Effects of ultrasound pretreatment at different powers on flavor characteristics of enzymatic hydrolysates of cod (Gadus macrocephalus) head. Food Res Int 2022; 159:111612. [DOI: 10.1016/j.foodres.2022.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
|
26
|
Effect of glycation on physicochemical properties and volatile flavor characteristics of silver carp mince. Food Chem 2022; 386:132741. [PMID: 35339077 DOI: 10.1016/j.foodchem.2022.132741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/09/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to explore the effect of glycation on physicochemical properties and volatile flavor characteristics of silver carp mince (SCM). The changes in the degree of grafting, chemical composition, pH, color, total amino acid composition, and volatile flavor compounds of SCM with or without glucose were studied at different heating times. The results showed that the addition of glucose could promote the glycation reaction rate of SCM. Lysine and cysteine were the main amino acids involved in glycation. Glycation enhanced the overall aroma of SCM by accelerating lipid oxidation and Strecker degradation. In conclusion, these results suggest that glycation can enhance the volatile flavor of SCM during thermal processing and can be used as a volatile flavor enhancement technology for the development of protein nutrition food with good flavor from low-value fish.
Collapse
|
27
|
Yang B, Joe GH, Li W, Shimizu Y, Saeki H. Comparison of Maillard-Type Glycated Collagen with Alginate Oligosaccharide and Glucose: Its Characterization, Antioxidant Activity, and Cytoprotective Activity on H 2O 2-Induced Cell Oxidative Damage. Foods 2022; 11:foods11152374. [PMID: 35954140 PMCID: PMC9367735 DOI: 10.3390/foods11152374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
To improve the antioxidant activity of collagen molecules using Maillard-type glycation, the relation between antioxidant activity and progress indexes for the Maillard reaction must be understood. In this study, lyophilized tilapia scale collagen was mixed with a half weight of alginate oligosaccharide (AO) or glucose and incubated at 60 °C and 35% relative humidity for up to 18 h to produce the Maillard-type glycated collagen (C-AO and C-Glu, respectively). As glycation progressed, the amount of conjugated sugar coupled with UV-vis absorbance at 294 nm and 420 nm increased more rapidly in C-Glu than in C-AO, and the available lysine decreased rapidly in C-Glu compared with C-AO. The early-to-middle- and late-stage products of the Maillard reaction were involved in enhanced antioxidant activity of digested C-AO and digested C-Glu, respectively. Additionally, C-AO acquired the antioxidant activity without marked available lysine loss. The cytoprotective effect of collagen in H2O2-induced damage was enhanced by glycation, achieved by reducing malondialdehyde content and increasing superoxide dismutase and catalase activities. These results indicate that AO is an excellent reducing sugar that enhances the health benefits of collagen without excessive loss of lysine, which is a nutritional problem of the Maillard-type glycation.
Collapse
|
28
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
29
|
Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chem 2022; 389:133128. [PMID: 35512506 DOI: 10.1016/j.foodchem.2022.133128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Herein, the effect of saccharide glycosylation by nine monosaccharides on bovine bone gelatin for the stabilization of fish oil-loaded emulsions was explored. The gelatin modification was analyzed and then the emulsifying properties of monosaccharide-modified gelatins were analyzed at pH 9.0 and 3.0. The results demonstrated that glycosylated gelatin structure, droplet stability, creaming stability, and liquid-gel transition time were dependent on monosaccharide carbon numbers, monosaccharide structures, and solution pH. Glycosylation modification of gelatins did not obviously change the emulsion droplet stability at pH 9.0, whereas it increased the emulsion droplet stability at pH 3.0. Glycosylation modification of gelatins did not obviously change the emulsion creaming index values (5.1%-8.4% at pH 9.0 and 25.8%-33.1% at pH 3.0). Three-carbon and four-carbon monosaccharides glycosylation significantly increased emulsion liquid-gel transition times. This work provided useful information to understand the effects of carbon numbers and structures of monosaccharides on the protein modification.
Collapse
|
30
|
Xu Y, Xiang P, Qiu W, Feng Y, Jin Y, Deng S, Tao N, Jin Y. Dielectric properties of the Maillard reaction solution formed between enzymatic hydrolysate of Antarctic krill and glucose under microwave heating. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Liu J, Huang S, Feng Q, Luo Y, Shi W. Sensory quality and digestibility evaluation of silver carp sausage glycated with
l
‐arabinose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Liu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Shuqin Huang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Qian Feng
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yixuan Luo
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai China
| |
Collapse
|
33
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
34
|
Yu B, Wu W, Wang B, Zhang N, Bak KH, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Maillard-reacted peptides from glucosamine-induced glycation exhibit a pronounced salt taste-enhancing effect. Food Chem 2021; 374:131776. [PMID: 34896957 DOI: 10.1016/j.foodchem.2021.131776] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Reducing salt intake, as one of the most cost-effective approaches, is congruent with improved population health. Grass carp skin collagen was subjected to enzymatic hydrolysis and ultrafiltration, followed by glucosamine-induced Maillard reaction to prepare Maillard-reacted peptides. Their color, free amino acid and peptide size distribution were analyzed, while UV and fluorescence spectroscopy were utilized to characterize the progress of Maillard reaction. The salt taste-enhancing effect of Maillard-reacted peptides was investigated via sensory analysis and electronic tongue. LC-MS/MS was employed to analyze the glycation sites of Maillard-reacted peptides. The results indicated that the degree of Maillard reaction was relatively low, and thermal degradation and crosslinking simultaneously occurred. Maillard-reacted peptides exhibited a significant salt taste-enhancing effect, which may be attributed to the glucosamine-induced glycation confirmed by LC-MS/MS analysis. The current study provides a theoretical basis for preparation of salt taste-enhancing peptides and their future application to reduce salt content of formulated foods.
Collapse
Affiliation(s)
- Binbin Yu
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing 400715, China.
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Wang Q, Xu Q, Wang H, Han B, Xia D, Wang D, Zhang W. Molecular mechanisms of interaction between enzymes and Maillard reaction products formed from thermal hydrolysis pretreatment of waste activated sludge. WATER RESEARCH 2021; 206:117777. [PMID: 34688093 DOI: 10.1016/j.watres.2021.117777] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP) is often used to improve the anaerobic digestion performance of waste activated sludge (WAS) in wastewater treatment plants (WWTPs). During the THP process, the proteins and polysaccharides in the biomass will undergo hydrolysis and Maillard reaction, producing biorefractory organic substances, such as recalcitrant dissolved organic nitrogen (rDON) and melanoidins. In this study, a series of spectroscopy methods were used to quantitatively analyze the Maillard reaction of glucose and lysine, and the interaction mechanisms of the Maillard reaction products (MRPs) and lysozyme were investigated. Results showed that the typical aromatic heterocyclic structures in MRPs, such as pyrazine and furan, were found to quench molecular fluorescence of lysozyme, resulting in an unfolding of standard protein structure and increase in lysozyme hydrophobicity. Significant loss of enzyme activity was detected during this process. Thermodynamic parameters obtained from isothermal titration calorimetry (ITC) confirmed that the interaction between MRPs and lysozyme occurred both exothermically and spontaneously. Density functional theory (DFT) calculations suggested that the molecular interactions of MRPs and protein included parallel dislocation aromatic stacking, T-shaped vertical aromatic stacking, H-bond and H-bond coupled to aromatic stacking.
Collapse
Affiliation(s)
- Qiandi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qiongying Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Huidi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dasha Xia
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310012, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
36
|
Physicochemical properties and antioxidant activity of Maillard reaction products derived from Dioscorea opposita polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Effect of freezing temperature on molecular structure and functional properties of gelatin extracted by microwave-freezing-thawing coupling method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Impact of glycation on physical properties of composite gluten/zein nanofibrous films fabricated by blending electrospinning. Food Chem 2021; 366:130586. [PMID: 34311229 DOI: 10.1016/j.foodchem.2021.130586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
In this study, the gluten/zein nanofibrous films were fabricated by blending electrospinning and then glycated with xylose via Maillard reaction. The average fiber diameter of the gluten film decreased from 551 to 343 nm with the increasing ratio of zein, but increased significantly to a range of 717-521 nm after glycation, which induced a higher thermal stability of the nanofibers with an order to disorder transition. The glycated composite films showed the reduced water vapor permeability and improved water stability with a stiffer and more elastic network structure, due to the enhanced intermolecular entanglements and interactions between polymer chains. The results from this work suggested that the composite gluten/zein electrospun films may be glycated via Maillard reaction to obtain desirable physical properties for active food-packaging applications.
Collapse
|
39
|
Zhong R, Lu X, Zhong J, Chen L, Cheng W, Liang P. Influence of Maillard Reaction in Volatile Flavor Compounds of Blue Round Scad ( Decapterus maruadsi) Enzymatic Hydrolysate. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1910762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ji Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
40
|
Li Y, Chen K, Yang Q, Hong H, Feng L, Luo Y. Development and characterization of novel antioxidant films based on chitosan and Maillard reaction products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Sánchez-Cid P, Jiménez‑Rosado M, Perez-Puyana V, Guerrero A, Romero A. Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers (Basel) 2021; 13:632. [PMID: 33672532 PMCID: PMC7923766 DOI: 10.3390/polym13040632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
In recent years, tissue engineering research has led to the development of this field by designing scaffolds with better properties that can fulfill its purpose of better and faster tissue regeneration, consequently improving people's quality of life. Scaffolds are matrices, predominantly composed of polymeric materials, whose main function is to offer support for cell adhesion and subsequent growth, leading to the regeneration of the damaged tissue. The widely used biopolymer in tissue engineering is collagen, which is the most abundant protein in animals. Its use is due to its structure, biocompatibility, ease of modification, and processability. In this work, collagen-based scaffolds were developed with different concentrations and processing techniques, by obtaining hydrogels and aerogels that were characterized with an emphasis on their morphology and mechanical properties. Moreover, fructose was added in some cases as a chemical crosslinking agent to study its influence on the scaffolds' properties. The obtained results revealed that the scaffolds with higher collagen concentrations were more rigid and deformable. Comparing both systems, the aerogels were more rigid, although the hydrogels were more deformable and had higher pore size homogeneity. Fructose addition produced a slight increase in the critical strain, together with an increase in the elastic modulus.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| | - Mercedes Jiménez‑Rosado
- Department of Chemical Engineering, Escuela Politécnica Superior, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Victor Perez-Puyana
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| | - Antonio Guerrero
- Department of Chemical Engineering, Escuela Politécnica Superior, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Alberto Romero
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| |
Collapse
|
42
|
Improved solubility and interface properties of pigskin gelatin by microwave irradiation. Int J Biol Macromol 2021; 171:1-9. [PMID: 33412193 DOI: 10.1016/j.ijbiomac.2020.12.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
In this study, the microwave irradiation as a green approach was applied to improve the properties (mainly solubility and interface properties) of pigskin gelatin. The results showed that the solubility of pigskin gelatin was improved obviously at room temperature (25 °C) due to the destruction of polymer subunits. Furthermore, the exposure of more hydrophobic groups in microwave-irradiated gelatin increased its hydrophobicity, consequently improving the amphiphilic property and the interfacial properties of gelatin. The results of interface behavior showed that the interfacial tension of microwave-irradiated gelatin was reduced obviously with the extension of irradiation time (0-30 min), which is more beneficial to adsorption of gelatin molecules at the interface, thus resulting in a significant increase of adsorption rate (AP) from 56.13% (0 min) to 91.87% (30 min). Correspondingly, the foaming and emulsifying properties of gelatin were also improved significantly (p < 0.05). This study would promote the development of food-grade foam and emulsion based on pigskin gelatin by adjusting solubility and interface properties.
Collapse
|