1
|
Liu X, Chen W, Sun M, Lv X, Shen X, Chai Z, Zeng M. The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems. Foods 2025; 14:299. [PMID: 39856964 PMCID: PMC11765285 DOI: 10.3390/foods14020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we aimed to investigate the inhibitory effects of cumin and cumin extracts from different origins (Hami, Turpan, and Hetian) on the formation of β-carboline heterocyclic amines (HCAs) in smoked meat and simulated systems, and to assess their potential as natural inhibitors in the food industry. The novelty of our research lies in the comprehensive comparative analysis of cumin extracts from different origins, which has not been fully explored in previous studies. We first conducted a quantitative analysis of the total phenol and flavonoid content in cumin extracts from the three origins and evaluated their antioxidant capacities. Subsequently, through simulation experiments, we assessed the inhibitory effects of these extracts on the formation of β-carboline heterocyclic amines and determined their free radical scavenging abilities. To further validate the practical application potential of these extracts, we prepared meat patty samples containing different concentrations of cumin powder, simulating actual processing conditions. The experimental results showed that while the total phenol content in cumin extracts from all origins was similar, averaging around 1.56 mg/g, there was a significant difference in the total flavonoid content, with the highest level observed in the Hetian cumin extract at 6.7 mg/g. Additionally, the Hetian cumin extract demonstrated superior antioxidant capacity, with an FRAP antioxidant activity reaching 21.04 μM TE/g dw, the highest among all samples. Our study also found that the inhibitory effect of cumin extracts on HCA formation was closely related to their free radical scavenging ability, with the Hetian cumin extract showing the strongest scavenging capacity. The addition of cumin powder to meat patties significantly reduced the content of β-carboline heterocyclic amines, particularly at lower cumin concentrations. In summary, our research results highlight the potential of cumin, especially from Hetian, as a natural inhibitor of β-carboline heterocyclic amine formation in processed meats. This study not only provides the food industry with a potential natural additive to improve food safety and quality, but also offers new directions for future research, namely by comparing natural plant extracts from different origins to explore their potential applications in food processing.
Collapse
Affiliation(s)
- Xiuxiu Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenyu Chen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Minghao Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xufang Lv
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xing Shen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhongping Chai
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Dong H, Ye H, Bai W, Zeng X, Wu Q. A comprehensive review of structure-activity relationships and effect mechanisms of polyphenols on heterocyclic aromatic amines formation in thermal-processed food. Compr Rev Food Sci Food Saf 2024; 23:e70032. [PMID: 39523696 DOI: 10.1111/1541-4337.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic substances mainly generated in thermal-processed food. Natural polyphenols have been widely used for inhibiting the formation of HAAs, whereas the effect of natural polyphenols on HAAs formation is complex and the mechanisms are far from being clearly elucidated. In order to clarify the comprehensive effect of polyphenols on HAAs, this review focused on the structure-activity relationships and effect mechanisms of polyphenols on the formation of HAAs. In addition, the effects of polyphenols on HAAs toxicity were also first reviewed from cell, gene, protein, and animal aspects. An overview of the effect of polyphenol structures such as parent ring and exocyclic group on the mitigation of HAAs was emphasized, aiming to provide some valuable information for understanding their effect mechanism. The HAAs formation is inhibited by natural polyphenols in a dose-dependent manner largely through eliminating free radicals and binding precursors and intermediates. The inhibitory effect was probably affected by the quantity and position of hydroxyl groups in the aromatic rings, and polyphenols with m-hydroxyl group in the aromatic ring had the stronger inhibitory effect. However, the presence of other substituents and excessive hydroxyl groups in natural polyphenols might mitigate the inhibitory effect and even promote the formation of HAAs. This review can provide theoretical reference for effectively controlling the formation of HAAs in thermal-processed food by natural polyphenols and reducing their harm to human health.
Collapse
Affiliation(s)
- Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd., Guangzhou, China
| | - Huiping Ye
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
4
|
Chen Q, Lu K, He J, Zhou Q, Li S, Xu H, Su Y, Wang M. Effects of seasoning addition and cooking conditions on the formation of free and protein-bound heterocyclic amines and advanced glycation end products in braised lamb. Food Chem 2024; 446:138850. [PMID: 38452502 DOI: 10.1016/j.foodchem.2024.138850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The accumulation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) in thermally processed meats has been arising safety concerns. The effects of cooking conditions and seasoning addition on the formation of HAs and AGEs in Chinese traditional braised lamb were investigated by UPLC-MS/MS analysis. Soy sauce significantly increased the formation of HAs and AGEs, among which light soy sauce had the greatest promoting effect (69.45-15300.62 %). Conversely, spices inhibited HAs and AGEs formation, the inhibition rate of free HAs and AGEs reached 22.06-34.72 % when using 70 % ethanol extract. Hot blanching treatment and adding soy sauce and spices at a later stage could significantly suppress HAs and AGEs production. Flavonoids, including galangin, hesperidin, narirutin, etc., were identified as key effectors in spices. These findings help to promote awareness of the formation of HAs and AGEs in braised lamb and provide valuable insights for optimizing processing techniques to minimize their production.
Collapse
Affiliation(s)
- Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Keyu Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Jiayi He
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Qian Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Siqian Li
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Hui Xu
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| | - Mingfu Wang
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Zhou Y, Ma Y, Ma Z, Ma Q, Li Z, Wang S. Theoretical exploration of the phenolic compounds' inhibition mechanism of heterocyclic aromatic amines in roasted beef patties by density functional theory. Food Res Int 2024; 186:114394. [PMID: 38729737 DOI: 10.1016/j.foodres.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
The ability of spices (bay leaf, star anise, and red pepper) and their characteristic phenolic compounds (quercetin, kaempferol, and capsaicin) to inhibit Heterocyclic aromatic amines (HAAs) in roasted beef patties were compared. Density functional theory (DFT) was used to reveal phenolic compounds interacting with HAAs-related intermediates and free radicals to explore possible inhibitory mechanisms for HAAs. 3 % red chili and 0.03 % capsaicin reduced the total HAAs content by 57.09 % and 68.79 %, respectively. DFT demonstrated that this was due to the stronger interaction between capsaicin and the β-carboline HAAs intermediate (Ebind = -32.95 kcal/mol). The interaction between quercetin and phenylacetaldehyde was found to be the strongest (Ebind = -17.47 kcal/mol). Additionally, DFT indicated that capsaicin reduced the carbonyl content by transferring hydrogen atoms (HAT) to eliminate HO·, HOO·, and carbon-centered alkyl radicals. This study provided a reference for the development of DFT in the control of HAAs.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yongliang Ma
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Ma
- Baishan Institute of Science and Technology, Baishan 134300, Jinlin, China
| | - Qingshu Ma
- National Drinking Water Product Quality Supervision and Inspection Center, Baishan 134300, Jinlin, China
| | - Zongping Li
- National Drinking Water Product Quality Supervision and Inspection Center, Baishan 134300, Jinlin, China
| | - Shujie Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
6
|
Cheng XR, Ma JH, Amadou I, Zhao W, Chen YY, Zhang CX, Guan B. Electrophilic components from Xiaoheiyao (rhizomes of Inula nervosa Wall.) alleviate the production of heterocyclic aromatic amines via creatinine inhibition. Food Chem 2023; 404:134561. [DOI: 10.1016/j.foodchem.2022.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
|
7
|
Xu Y, Cheng Y, Zhu Z, Guo H, Bassey AP, Huang T, Huang Y, Huang M. Inhibitory effect of mulberry leaf (Morus alba L.) extract on the formation of free and bound heterocyclic amines in pan-fried muscovy duck (Cairina moschata) patties. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Application of High-Performance Liquid Chromatography with Fluorescence Detection for Non-Polar Heterocyclic Aromatic Amines and Acridine Derivatives Determination in Pork Loin Roasted in a Roasting Bag. Foods 2022; 11:foods11213385. [DOI: 10.3390/foods11213385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Heat treatment of meat can lead to the formation of carcinogenic organic compounds. The influence of dried fruits on the formation of non-polar heterocyclic aromatic amines (carbolines) and nitrogen derivatives of polycyclic aromatic hydrocarbons (azaarenes) in roasted pork loin was elucidated. Two hundred grams of fruit per 1 kg of meat were used as stuffing. Carbolines, derivatives of pyridoimidazole and pyridoindole, and azaarenes (benzoacridines and dibenzoacridines) were determined by means of high-performance liquid chromatography with fluorescence detection. The total concentration of six δ-, γ- and α-carbolines in roasted pork loin was 1.3 ng/g. This content decreased by 64%, 58%, and 54% in pork loin stuffed with prunes, apricots, and cranberries, respectively. Concentrations of β-carbolines (harmane and norharmane) increased under the influence of added fruits. The norharmane content increased the most, from 2.2 ng/g in the control sample to 12.3 ng/g in meat prepared with cranberries. The harmane content increased from 1.0 ng/g to 3.6 ng/g in meat with prunes. The total concentration of azaarenes (two benzoacridines and dibenzo[a,c]acridine), which was close to 0.1 ng/g, decreased in dishes with prunes and apricots by 54% and 12%, respectively. Azaarenes were not found in samples of meat stuffed with cranberries.
Collapse
|
9
|
Sha L, Liu S. Effect of tea polyphenols on the inhibition of heterocyclic aromatic amines in grilled mutton patties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Sha
- College of Food Science and Engineering Bohai University Jinzhou China
- Department of Plant and Soil Sciences, KTRDC University of Kentucky Lexington Kentucky USA
| | - Susu Liu
- College of Food Science and Engineering Bohai University Jinzhou China
| |
Collapse
|
10
|
The inhibitory effects of yellow mustard (Brassica juncea) and its characteristic pungent ingredient allyl isothiocyanate (AITC) on PhIP formation: Focused on the inhibitory pathways of AITC. Food Chem 2022; 373:131398. [PMID: 34710679 DOI: 10.1016/j.foodchem.2021.131398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
The effects of yellow mustard (Brassica juncea) and its characteristic component allyl isothiocyanate (AITC) on the formation of 2-amino-y1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) in roast beef patties and PhIP-producing model systems were investigated. The probable inhibitory pathways of AITC on PhIP formation were also investigated in the model systems. The results revealed that yellow mustard and AITC can reduce PhIP in roast beef patties up to 41.7% and 60.2%, respectively. The rate of inhibition of PhIP also reached 64.8% in the PhIP-producing model systems. Furthermore, AITC could react with creatinine and phenylalanine in the model system (reducing each by 15.0%%-23.7% and 31.4%-55.8%, respectively). AITC showed the great scavenging ability of free radical scavenging (up to 64.2%). AITC also reacted with the intermediate phenylacetaldehyde (16.9%-30.8%) and the final product PhIP (7.0%-24.6%). It is speculated that AITC can inhibit PhIP through competitive inhibition of precursors, blocking intermediate, free radical scavenging, and direct elimination of PhIP.
Collapse
|
11
|
Zheng RL, Ren T, Niu CT, Zheng FY, Wang JJ, Liu CF, Li Q. Anthocyanins composition and antioxidant activity of purple rice and color degradation under sunlight exposure of purple rice wine. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yan Y, Zhou YQ, Huang JJ, Wan X, Zeng MM, Chen J, Li WW, Jiang J. Influence of soybean isolate on the formation of heterocyclic aromatic amines in roasted pork and its possible mechanism. Food Chem 2022; 369:130978. [PMID: 34500209 DOI: 10.1016/j.foodchem.2021.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
In this paper, the effects of soybean protein isolate (SPI) on the formations of five heterocyclic aromatic amines (HAAs) in roasted pork were investigated. The levels of all five HAAs improved upon addition of 2.5% of SPI (P < 0.05). With higher SPI dosage, the levels of HAA decreased after seeing an increase. Two HAAs (MeIQx and 4,8-DiMeIQx) were inhibited by 10.0% of SPI, with the inhibitory efficiencies of 7.0 % and 85.7%, respectively. After being heated, the levels of both the free amino acids and carbonyl groups in the SPI were observed significantly increased, from 55.04 μg g·SPI-1 to 91.66 μg g·SPI-1 and from 123.85 ± 13.07 to 931.78 ± 32.56, respectively (P < 0.05). Therefore, the possible promotion mechanism of the SPI was speculated that the heated SPI would provide both the HAA precursors and carbonyls, which significantly promoted the Strecker degradation and generated more HAA intermediates (P < 0.05).
Collapse
Affiliation(s)
- Yan Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Ying-Qin Zhou
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jing-Jing Huang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xin Wan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Mao-Mao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei-Wei Li
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Jiang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
13
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|