1
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
2
|
Chen B, Miao J, Ye H, Xia Z, Huang W, Guo J, Liang X, Yin Y, Zheng Y, Cao Y. Purification, Identification, and Mechanistic Investigation of Novel Selenium-Enriched Antioxidant Peptides from Moringa oleifera Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4625-4637. [PMID: 36892038 DOI: 10.1021/acs.jafc.2c08965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, five novel Se-enriched antioxidant peptides (FLSeML, LSeMAAL, LASeMMVL, SeMLLAA, and LSeMAL) were purified and identified from Se-enriched Moringa oleifera (M. oleifera) seed protein hydrolysate. The five peptides showed excellent cellular antioxidant activity, with respective EC50 values of 0.291, 0.383, 0.662, 0.1, and 0.123 μg/mL. The five peptides (0.025 mg/mL) increased the cell viability from 78.72 to 90.71, 89.16, 93.92, 83.68, and 98.29%, respectively, effectively reducing reactive oxygen species accumulation and significantly increasing superoxide dismutase and catalase activities in damaged cells. Molecular docking results revealed that the five novel Se-enriched peptides interacted with the key amino acid of Keap1, thus directly blocking the interaction of Keap1-Nrf2 and activating the antioxidant stress response to enhance the ability of scavenging free radicals in vitro. In conclusion, Se-enriched M. oleifera seed peptides exhibited significant antioxidant activity and can be expected to find widespread use as a highly active natural functional food additive and ingredient.
Collapse
Affiliation(s)
- Bingbing Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guilin 541004, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoduo Ye
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Xia
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Wen Huang
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Guo
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Xingtang Liang
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yong Cao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Guo J, Lu A, Sun Y, Liu B, Zhang J, Zhang L, Huang P, Yang A, Li Z, Cao Y, Miao J. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Wu Y, Ye Q, Zhang L, Cheng Z, Xiao K, Zhu L, Yin Y, Dong H. Evaluation on antiosteoporosis of collagen peptides prepared by immobilized protease with eggshell membrane. J Food Sci 2022; 87:2391-2404. [PMID: 35584966 DOI: 10.1111/1750-3841.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Collagen peptides are a potential treatment for osteoporosis due to their antiosteoporosis activity. In this study, we prepared immobilized protease with eggshell membrane as carrier, and then hydrolyzed collagen to obtain collagen peptide. The antiosteoporosis of collagen peptides was confirmed by hBMSC osteogenic differentiation and bone mineralization improvement results. Surprisingly, antiosteoporosis of collagen peptides was related to the molecular weight of collagen peptides. This was derived from the osteoblast marker gene expressions, and mineral elements in P1 treatment were higher than those in P3 treatment. Consequently, these results confirmed that antiosteoporosis of low molecular weight collagen peptides is higher than that of higher molecular weight collagen peptides. Furthermore, the antiosteoporosis activity of P1 was due to its peptide sequences with known antiosteoporosis activity in P1. PRACTICAL APPLICATION: Using eggshell membrane as carrier to prepare immobilized protease was meaningful for solving the problem of resource waste. In addition, the results showed that collagen peptides possessed antiosteoporosis, and the effect of low molecular weight collagen peptides was better. This study provides a theoretical basis for developing high antiosteoporosis collagen peptides able to treat osteoporosis.
Collapse
Affiliation(s)
- Yuanyue Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qianqian Ye
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Zuxin Cheng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Zhu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yurong Yin
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|