1
|
Zhou H, Tao L, Tian W, Song Z, Yang Z, Li Q, Yu Y, Qi F. Development of a mesoporous polypyrrole nanofiber mat for simultaneous detection of multiple mycotoxins in various foods. Food Chem 2025; 463:141153. [PMID: 39255705 DOI: 10.1016/j.foodchem.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Due to health hazards and co-contamination of mycotoxins, efficient separation and detection of multiple mycotoxins in food is highly desirable yet challenging. In this study, we prepared a novel mesoporous polypyrrole nanofiber mat (M-PPy NFM) for extracting multiple mycotoxins from food. The mesoporous effects and multifunctional PPy contribute to higher recovery and purification efficiency of M-PPy NFM for mycotoxins by facilitating hydrogen bonding and π-π interaction. Under optimized conditions, a simple, eco-friendly solid phase extraction (SPE) method coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was developed for mycotoxin detection. This innovative method demonstrates good linearity (0.9991-0.9999), low detection limits (0.03-0.33 μg kg-1), satisfactory recoveries (92.0 %-108.0 %) and precision (0.3 %-11.7 %). Notably, it significantly reduces organic solvent consumption to 3.1 mL while minimizing adsorbent usage to 5.0 mg. Moreover, M-PPy NFM could be reused ten times. This study confirms the huge potential of M-PPy NFM for efficient applications in mycotoxin extraction and determination.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - LiMei Tao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenxin Tian
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhaojie Song
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zesha Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feifei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
2
|
Cao J, Wang M, Han Y, Wang M, Yan H. Hydrophilic molecularly imprinted resin-hexagonal boron nitride composite as a new adsorbent for selective extraction and determination of a carcinoid tumor biomarker in urine. Anal Chim Acta 2024; 1294:342289. [PMID: 38336412 DOI: 10.1016/j.aca.2024.342289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The detection of disease biomarkers in biological samples plays an important role in early diagnosis and treatment of carcinoid tumor. However, due to the complexity of biological samples and the extremely low concentration of disease biomarkers, sample pretreatment is still the bottleneck of achieving accurate quantitative determination. In this work, new hydrophilic molecularly imprinted resin-hexagonal boron nitride (HMIR-h-BN) composites were developed and used as a new solid phase extraction (SPE) adsorbent for selective detection of 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of carcinoid tumor, in urine. RESULTS Twenty-two types of HMIR-h-BN were successfully synthesized through growing hydrophilic molecularly imprinted resin on surface of activated two-dimensional h-BN nanosheets, and preparation parameters affecting the adsorption performance of HMIR-h-BN were investigated and optimized through adsorption experiments. HMIR-h-BN #19 (the ratio of resorcinol to hexamethylenetetramine: 6:3; the dosage of h-BN: 300 mg; the dosage of dummy template: 0.12 mmol; the imprinting time: 4 h) has demonstrated to be the optimal material for efficient separation and extraction of 5-HIAA. Combined with HPLC-UV, the limit of detection and the limit of quantification of 5-HIAA in real urine samples were 9.4 ng mL-1 and 31.3 ng mL-1, respectively, the coefficient of determination (R2) was 0.9996 in the linear range of 0.1-300 μg mL-1 and the relative recoveries ranged from 86.9 % to 97.7 % with RSD ≤5.1 %. Moreover, after being processed by HMIR-h-BN-SPE, there are no interferences from other peaks at the peak position of 5-HIAA. SIGNIFICANCE The HMIR-h-BN composite has been demonstrated to be capable of selective extraction of 5-HIAA from urine samples and have a significant purification effect. Based on the established HMIR-h-BN-SPE-HPLC-UV method, accurate quantitative determination of 5-HIAA in urine samples was achieved, which is expected to be applied in the early diagnostic of carcinoid tumor.
Collapse
Affiliation(s)
- Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Mingwei Wang
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Moral A, Borrull F, Furton KG, Kabir A, Fontanals N, Marcé RM. Selective determination of 2-aminobenzothiazole in environmental water and organic extracts from fish and dust samples. Anal Bioanal Chem 2024; 416:439-448. [PMID: 37946037 PMCID: PMC10761388 DOI: 10.1007/s00216-023-05035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, a homemade mixed-mode ion-exchange sorbent based on silica with embedded graphene microparticles is applied for the selective extraction of 2-aminobenzothiazole (NH2BT) followed by determination through liquid chromatography coupled to high-resolution mass spectrometry. The sorbent was evaluated for the solid-phase extraction of NH2BT from environmental water samples (river, effluent wastewater, and influent wastewater), and NH2BT was strongly retained through the selective cation-exchange interactions. Therefore, the inclusion of a clean-up step of 7 mL of methanol provided good selectivity for the extraction of NH2BT. The apparent recoveries obtained for environmental water samples ranged from 62 to 69% and the matrix effect from -1 to -14%. The sorbent was also evaluated in the clean-up step of the organic extract for the extraction of NH2BT from organic extracts of indoor dust samples (10 mL of ethyl acetate from pressurized liquid extraction) and fish (10 mL of acetonitrile from QuEChERS extraction). The organic extracts were acidified (adding a 0.1% of formic acid) to promote the cation-exchange interactions between the sorbent and the analyte. The apparent recoveries for fish samples ranged from 22 to 36% depending on the species. In the case of indoor dust samples, the recovery was 41%. It should be highlighted the low matrix effect encountered in such complex samples, with values ranging from -7 to 5% for fish and dust samples. Finally, various samples were analyzed. The concentration in river samples ranged from 31 to 136 ng/L; in effluent wastewater samples, from 55 to 191 ng/L; in influent wastewater samples, from 131 to 549 ng/L; in fish samples, from 14 to 57 ng/g dried weight; and in indoor dust samples, from
Collapse
Affiliation(s)
- Alberto Moral
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, International Forensic Research Institute, Miami, FL, 33199, USA
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, International Forensic Research Institute, Miami, FL, 33199, USA
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
4
|
Chen Y, Cao J, Zhang J, Qi Z, Yan H. Functionalized nanofibers mat prepared through thiol-ene "click" reaction as solid phase extraction adsorbent for simultaneous detection of florfenicol and paracetamol residues in milk. Food Chem 2023; 437:137830. [PMID: 39491293 DOI: 10.1016/j.foodchem.2023.137830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Due to the significant differences in physical and chemical properties of various veterinary drugs, sample pretreatment is still the bottleneck of simultaneous detection of multiple veterinary drug residues. In order to achieve quantitative determination of two different types of veterinary drug residues (florfenicol and paracetamol) in milk, 1-allyl-3-methylimidazolium chloride (AmimCl) functionalized nanofibers mat (AmimCl-NFsM) was prepared through thiol-ene "click" reaction and applied as a new solid phase extraction adsorbent. The preparation parameters were systematically investigated and optimized through dynamic adsorption experiments. The developed method achieved significant extraction and purification efficiency, which was attributed to the multiple adsorption mechanisms of AmimCl-NFsM. Under the optimal condition, the established method showed low detection limit (1.25-2.90 ng/mL), high precision (RSDs ≤ 12.6 %) and good recovery (76.4 %-96.1 % with RSDs ≤ 5.23 %). The obtained results demonstrated the practical application value of the established method in food safety field.
Collapse
Affiliation(s)
- Yumo Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Jie Zhang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhezhe Qi
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Yang H, Dai H, Wan X, Shan D, Zhang Q, Li J, Xu Q, Wang C. Simultaneous determination of multiple mycotoxins in corn and wheat by high efficiency extraction and purification based on polydopamine and ionic liquid bifunctional nanofiber mat. Anal Chim Acta 2023; 1267:341361. [PMID: 37257974 DOI: 10.1016/j.aca.2023.341361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Due to the universality and harmfulness of mycotoxin co-contamination in cereals, it is of great significance to simultaneously monitor various mycotoxins co-polluted to ensure food safety and public health. In this work, a nanofiber mat modified by polydopamine and ionic liquid (PDA-IL-NFsM) was prepared and utilized as a solid-phase extraction (SPE) adsorbent for the simultaneous quantitative detection of multiple mycotoxins in corn and wheat. The PDA-IL-NFsM can form multiple retention mechanisms with the targets through hydrogen bond, π-π interaction, electrostatic or hydrophobic interaction, it shows favorable simultaneous adsorption performance (adsorption efficiency mostly higher than 88.27%) for fifteen mycotoxins in seven classes. Moreover, it can significantly reduce the matrix effect (lower than -13.69%), showing a good purification effect on the sample matrix. Based on the superior performance of PDA-IL-NFsM, a simple sample preparation method was established. The sample extract is simply diluted with water for SPE, and the eluent can be directly collected for ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The detection limit can reach 0.04-4.21 μg kg-1, the recovery was 80.09%-113.01%, and the relative standard deviations of intra-day and inter-day precision were 2.80%-14.81% and 0.68%-13.80% respectively. The results show that the proposed method has good sensitivity, accuracy and precision, and has practical application potential.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hairong Dai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China.
| |
Collapse
|
6
|
Nian Q, Yang H, Meng E, Wan X, Zhang Q, Wang C, Xu Q. Polyvinyl alcohol electrospun nanofiber membrane based solid-phase extraction for monitoring administered aminoglycoside antibiotics in various animal-derived foods. Food Chem 2023; 428:136771. [PMID: 37423107 DOI: 10.1016/j.foodchem.2023.136771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
This work aims to develop a widely applicable method to monitor administered AGs in various animal-derived food samples to ensure food safety. A polyvinyl alcohol electrospun nanofiber membrane (PVA NFsM) was synthesized and employed as solid-phase extraction (SPE) sorbent, in combination with UPLC-MS/MS, for the simultaneous detection of ten AGs in nine types of animal-derived food samples. PVA NFsM exhibited excellent adsorption performance for the targets (with an adsorption rate of over 91.09%), good matrix purification ability (with a reduction of 7.65%-77.47% in matrix effect after SPE), and good recyclability (can be reused 8 times). The method displayed a linear range of 0.1-25000 μg/kg and attained limits of detection for AGs were 0.03-15 μg/kg. Spiked samples demonstrated a recovery of 91.72%-100.04% with a precision of<13.66%. The practicality of the developed method was verified by testing multiple actual samples.
Collapse
Affiliation(s)
- Qixun Nian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Erqiong Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Dual-template hydrophilic imprinted resin as an adsorbent for highly selective simultaneous extraction and determination of multiple trace plant growth regulators in red wine samples. Food Chem 2023; 411:135471. [PMID: 36669342 DOI: 10.1016/j.foodchem.2023.135471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
In recent years, numerous plant growth regulators have been found in foods and have a toxicity to human health, so its simultaneous multiple monitoring is urgently. For the first time, a rapid, accurate, and high-selective method was established to extract and determine multiple plant growth regulators simultaneously in red wines using a new dual-template hydrophilic molecularly imprinted resin (DHMIR) as an adsorbent of pipette tip solid-phase extraction coupled with HPLC. The as-prepared DHMIR combined the advantages of the hydrophilicity of hydrophilic resin and multi-imprinted recognition of dual-template molecular imprinting, overcoming the poor imprinted recognition ability of traditional imprinting materials in water and low extraction efficiency to multiple targets. Under the optimized conditions, the proposed method exhibited high sensitivity (2.29-3.94 ng mL-1) and recoveries (80.9-109.0 %) using only 15 mg DHMIR. This study provides an effective strategy for rapid, accurate, low-cost, and high-selective determination of the multiple analytes in food samples.
Collapse
|
8
|
Zhang H, Nian Q, Dai H, Wan X, Xu Q. A nanofiber-mat-based solid-phase sensor for sensitive ratiometric fluorescent sensing and fine visual colorimetric detection of tetracycline. Food Chem 2022; 395:133597. [DOI: 10.1016/j.foodchem.2022.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
9
|
Wu X, Liu X, Yu L, Liu C, Lu X, Chen M, Zhao S. Rapid detection of heterocyclic aromatic amines in cakes by digital imaging colorimetry based on magnetic solid phase extraction with sulfonated hyper-cross-linked polymers. Food Chem 2022; 385:132690. [PMID: 35305438 DOI: 10.1016/j.foodchem.2022.132690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
To improve the hydrophobicity and poor separability of hyper-cross-linked polymers (HCPs) in extraction, a porous magnetic adsorbent (Fe3O4@SHCP) was constructed by facile post-modification to introduce sulfonic acid groups and magnetic nanoparticles for the magnetic solid-phase extraction of heterocyclic aromatic amines (HAAs). Owing to the double extraction mechanism adopted by Fe3O4@SHCP, it has a high extraction efficiency for HAAs. Coupled with high-performance liquid chromatography (HPLC), 5 HAAs in baked cakes were detected at one time. Under optimal extraction conditions, the enrichment factor of HAAs was up to 952-986, with LODs at 0.05-0.3 ng·g-1. Based on the HPLC method, novel digital imaging colorimetry (DIC) was developed to accurately and rapidly monitor HAAs in cakes. Additionally, the established DIC method has been used to successfully evaluate the effect of baking temperature and duration on HAAs in baked cakes.
Collapse
Affiliation(s)
- Xiaohai Wu
- Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xianzhi Liu
- Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Lan Yu
- Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Chengwei Liu
- Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xin Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Min Chen
- Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
10
|
Zhou J, Li F, Wang M, Yan C, Yang M, Wang T, Zhang L. Preparation of clorprenaline certified reference material: Purity determination and uncertainty evaluation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Xu X, Xu X, Sun L, Wu A, Song S, Kuang H, Xu C. An ultrasensitive colloidal gold immunosensor to simultaneously detect 12 beta (2)-adrenergic agonists. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123119. [DOI: 10.1016/j.jchromb.2022.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 01/08/2022] [Indexed: 01/03/2023]
|
12
|
Rapid and sensitive fluorescence sensing detection of nitroaromatic compounds in water samples based on pyrene functionalized nanofibers mat prepared via green approach. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|