1
|
Ren Y, Sun J, Mao X. Protein degradation mechanisms during refrigerated storage of gazami crab (Portunus trituberculatus) at endogenous and microbial-derived enzyme levels. Food Chem 2025; 469:142449. [PMID: 39708657 DOI: 10.1016/j.foodchem.2024.142449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
During storage, the proteins of gazami crab (Portunus trituberculatus) are prone to hydrolysis into amino acids and biogenic amines, in which enzymes play a critical role. However, studies exploring spoilage mechanisms from the perspective of enzymes are limited. This study identified 84 endogenous and 52 microbial-derived proteolytic enzymes and peptidases by proteomics and metagenomics. There are 7 endogenous amino acid deaminases, primarily degrade glutamate and aspartate. Additionally, 25 amino acid deaminases of microbial origin were identified, which mainly degrade serine. The formation of biogenic amines involved 14 enzymes, all of which were microbial in origin, primarily synthesizing putrescine from arginine. The main microbial contributors to these enzymes were Photobacterium, Vibrio, and Aliivibrio, accounting for 63.87 %, 15.51 %, and 8.69 % at the end of refrigeration, respectively. This study provides insights into the mechanisms of quality deterioration in gazami crab during refrigeration, from the perspectives of metabolic enzymes and microbial activity.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Zhang B, Dou H, Teng S, Ye K. Pseudomonas fragi and Pseudomonas lundensis drove the co-spoilage in chilled pork: Insights from the metabolome. Food Chem 2025; 464:141717. [PMID: 39447269 DOI: 10.1016/j.foodchem.2024.141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Pseudomonas fragi and Pseudomonas lundensis are key spoilage microorganisms in aerobically stored chilled meat, which had co-spoilage effect on chilled pork. However, the mechanism of co-spoilage interaction of P. fragi and P. lundensis has not been elucidated. The metabolism of nutrients in pork by mixed bacteria may differ from that by single strains. This study applied metabolomics and in vitro metabolite utilization experiment to assess the mechanism of that co-metabolize raw pork during storage. Results showed that co-spoilage group had 104 differential metabolites (histamine, N-methylhydantoin and D-gluconic acid, etc.) and 78 differential metabolites (putrescine, uracil acid and uracil, etc.) compared to P. fragi and P. lundensis group, respectively. These differential metabolites were mainly related to histidine metabolism, arginine biosynthesis, and purine. The co-spoilage effect of P. fragi and P. lundensis was related to the promotion of deamination and decarboxylation of histidine to produce histamine, the promotion of α-ketoglutarate and glutamate-mediated transamination, and the full utilization of the arginine deiminase pathway by the co-culture bacteria in the degradation of arginine to produce putrescine. In vitro experiment, co-cultures of these strains resulted in greater consumption of glucose, higher utilization activity, and promoted deamination and decarboxylation of amino acids. These findings reveal the complex and competitive interactions of co-culture of P. fragi and P. lundensis, providing insight into microbial spoilage mechanisms in chilled pork.
Collapse
Affiliation(s)
- Bingjie Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Han Dou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Shuang Teng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Bai Y, Wang M, Zhang X, Ke Z, Zhu S, Ding Y, Zhou X. Mechanisms of ammonia-like off-flavors formation in dried shrimp: Contribution of spoilage microbiota and their metabolism. Food Chem 2025; 463:141445. [PMID: 39423485 DOI: 10.1016/j.foodchem.2024.141445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Dried shrimp is susceptible to ammonia-like off-flavors (ALOF) during storage, yet the formation mechanisms are still not fully clear. This study analysed the contribution of different parts of dried shrimp to ALOF and characterised the formation mechanisms mainly from microbiological spoilage and amino acid metabolism points. Results showed that head viscera were the main contributors to ALOF, and visceral bacteria were the primary source of microorganisms in stored dried shrimp. The sensory scores of groups without head viscera kept at 0-1 during the storage, indicating no smellable ammonia odour. Analysis of off-flavor indicators showed that visceral bacteria promoted protein degradation and amino acid metabolism. Both amino acid deamination and decarboxylation activities of spoilage microbiota contributed to ALOF formation; however, deamination activities of visceral microbiota were more prominent, particularly for bitter amino acids metabolism. These results provide guidelines for controlling ALOF generation in dried shrimp products during storage.
Collapse
Affiliation(s)
- Yan Bai
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Min Wang
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xiaoyan Zhang
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhigang Ke
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Shichen Zhu
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuting Ding
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xuxia Zhou
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
4
|
Wang H, Yu C, Sun Y, Cui N, Zhong B, Peng B, Hu M, Li J, Tu Z. Characterization of key off-odor compounds in grass carp cube formed during room temperature storage by molecular sensory science approach. Food Chem X 2024; 24:102011. [PMID: 39717407 PMCID: PMC11664276 DOI: 10.1016/j.fochx.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Flavor is a significant factor in determining the popularity of freshwater fish. However, freshwater fish can easily spoil during storage, producing an unpleasant odor. Little research has determined the changes in key off-odor compounds (OOCs) in freshwater fish during storage. In this study, quantitation and odor activity value (OAV) calculations revealed that 19 odorants were important volatile odor compounds in fresh, spoilage, and serious spoilage GCC. Recombination and omission experiments verified that (E)-2-hexenal, acetoin, N,N-dimethyl-benzenamine, trimethylamine (TMA), and ammonia were the key OOCs in spoilage GCC. Additional key OOCs in serious spoilage GCC were cyclohexane isothiocyanato, butylated hydroxytoluene, putrescine, cadaverine and histamine compared to those of spoilage GCC. Correlation analysis showed that 12 amino acids and 10 fatty acids played important roles in the formation of key OOCs. This study provides a theoretical basis for a comprehensive understanding of the formation of key OOCs in GCC during room temperature storage.
Collapse
Affiliation(s)
- Hao Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengwei Yu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yanan Sun
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ning Cui
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bizhen Zhong
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bin Peng
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jinlin Li
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
5
|
Yi Z, Xiao X, Cai W, Ding Z, Ma J, Lv W, Yang H, Xiao Y, Wang W. Unraveling the spoilage characteristics of refrigerated pork using high-throughput sequencing coupled with UHPLC-MS/MS-based non-targeted metabolomics. Food Chem 2024; 460:140797. [PMID: 39128367 DOI: 10.1016/j.foodchem.2024.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The spoilage of refrigerated pork involves nutrient depletion and the production of spoilage metabolites by spoilage bacteria, yet the microbe-metabolite interactions during this process remain unclear. This study employed 16S rRNA high-throughput sequencing and non-targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to reveal the core microbiota and metabolite profiles of pork during refrigeration. A total of 45 potential biomarkers were screened through random forest model analysis. Metabolic pathway analysis indicated that eleven pathways, including biogenic amine metabolism, pentose metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, and fatty acid degradation, were potential mechanisms of pork spoilage. Correlation analysis revealed nine metabolites-histamine, tyramine, tryptamine, D-gluconic acid, UDP-d-glucose, xanthine, glutamine, phosphatidylcholine, and hexadecanoic acid-as spoilage biomarkers, with Pseudomonas, Serratia, and Photobacterium playing significant roles. This study provides new insights into the changes in microbial and metabolic characteristics during the spoilage of refrigerated pork.
Collapse
Affiliation(s)
- Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Zhang L, Han L, Yang J, Sun Q, Li K, Prakash S, Dong X. Preservation strategies for processed grass carp products: Analyzing quality and microbial dynamics during chilled and ice temperature storage. Food Chem X 2024; 23:101428. [PMID: 38978822 PMCID: PMC11228557 DOI: 10.1016/j.fochx.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigated the impact of ice temperature storage on quality and bacterial composition of processed fish paste products (PFP). Freezing curve revealed the ice temperature was -1 °C. Electric nose (e-nose) showed significant changes in volatile components within 8 days. Results of total volatile basic nitrogen (TVB-N) showed that PFP stored at 4 °C reached its limit after 2 days, whereas PFP stored at ice temperature remained stable for 6 days. Thiobarbituric acid reactive substances (TBARS) demonstrated delayed oxidation in PFP stored at ice temperature compared to 4 °C. TCA-soluble peptides indicated that the protein degradation was suppressed by ice temperature. Additionally, ice temperature inhibited microbial growth and altered bacterial composition. High-throughput sequencing revealed that Pseudomonas, Brochothrix, Carnobacterium were dominant at 4 °C, while Acinetobacter, Pseudomonas, Janthinobacterium and Brochothrix were dominant at ice temperature. In summary, ice temperature might be a potential method for maintaining the freshness of PFP.
Collapse
Affiliation(s)
- Lin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Lin Han
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jinye Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qinxiu Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
7
|
Zhang Z, Zhao J, Zang J, Peng C, Lv L, Li Z. The inhibition mechanism of PostbioYDFF-3 on quality deterioration of refrigerated grass carp fillets from the perspective of endogenous enzyme and microorganisms changes. Food Chem 2024; 450:139345. [PMID: 38640524 DOI: 10.1016/j.foodchem.2024.139345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
The protective mode of PostbioYDFF-3 (referred to as postbiotics) on the quality stability of refrigerated fillets was explored from the aspects of endogenous enzyme activity and the abundance of spoilage microorganisms. Compared to the control group, the samples soaked in postbiotics showed significant reductions in TVC, TVB-N and TBARS values by 39.6%, 58.6% and 25.5% on day 5, respectively. In addition, the color changes, biogenic amine accumulation and texture softening of the fish fillets soaked in postbiotics were effectively suppressed. Furthermore, the activity of endogenous enzyme activities was detected. The calpain activities were significantly inhibited (p < 0.05) after soaking in postbiotics, which declined by 23%. Meanwhile, high throughput sequencing analysis further indicated that the growth of spoilage microorganism such as Acinetobacter and Pseudomonas were suppressed. Overall, the PostbioYDFF-3 was suitable for preserving fish meat.
Collapse
Affiliation(s)
- Zhesheng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jinshan Zhao
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
8
|
Li Q, Wen X, Liang S, Sun X, Ma H, Zhang Y, Tan Y, Hong H, Luo Y. Enhancing bighead carp cutting: Chilled storage insights and machine vision-based segmentation algorithm development. Food Chem 2024; 450:139280. [PMID: 38631209 DOI: 10.1016/j.foodchem.2024.139280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
To enhance market demand and fish utilization, cutting processing is essential for fish. Bighead carp were cut into four primary cuts: head, dorsal, belly, and tail, collectively accounting for 77.03% of the fish's total weight. These cuts were refrigerated at 4 °C for 10 days, during which the muscle from each cut was analyzed. Pseudomonas.fragi proliferated most rapidly and was most abundant in eye muscle (EM), while Aeromonas.sobria showed similar growth patterns in tail muscle (TM). Notably, EM exhibited the highest rate of fat oxidation. TM experienced the most rapid protein degradation. Furthermore, to facilitate the cutting applied in mechanical processing, a machine vision-based algorithm was developed. This algorithm utilized color threshold and morphological parameters to segment image background and divide bighead carp region. Consequently, each cut of bighead carp had a different storage quality and the machine vision-based algorithm proved effective for processing bighead carp.
Collapse
Affiliation(s)
- Qing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyi Wen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shijie Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyue Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yihan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Chen B, Yan Q, Xu T, Li D, Xie J. Effect of Specific Spoilage Organisms on the Degradation of ATP-Related Compounds in Vacuum-Packed Refrigerated Large Yellow Croaker ( Larimichthys crocea). Foods 2024; 13:1989. [PMID: 38998494 PMCID: PMC11241306 DOI: 10.3390/foods13131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
This study examined the spoilage potential of specific spoilage organisms on the degradation of adenosine triphosphate (ATP)-related compounds in vacuum-packed refrigerated large yellow croaker. The total viable count (TVC), ATP-related compounds and related enzymes of vacuum-packed refrigerated large yellow croaker inoculated with different bacteria (Pseudomonas fluorescens and Shewanella putrefaciens) were characterized using the spread plate method, high-performance liquid chromatography and assay kits, respectively. Results indicated that the TVC for both control and Shewanella putrefaciens groups reached spoilage levels at days 9 and 15, respectively. The changes of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine deaminase activity across all groups showed no significant difference attributable to microbial growth. The results suggested that ATP to inosine monophosphate (IMP) degradation primarily occurs via fish's endogenous enzymes, with minimal microbial involvement. On day 12, the IMP content in fillets inoculated with Pseudomonas fluorescens (0.93 μmol/g) was half higher than in those inoculated with Shewanella putrefaciens (0.57 μmol/g). Both spoilage organisms facilitated IMP degradation, with Shewanella putrefaciens making a more substantial contribution. Analysis of K values and correlation coefficients revealed that Shewanella putrefaciens was the primary factor in the freshness loss of refrigerated vacuum-packed large yellow croaker. These findings offer a reference for understanding quality changes in refrigerated large yellow croaker, especially regarding umami degradation at the microbial level.
Collapse
Affiliation(s)
- Bohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.C.); (Q.Y.); (T.X.); (J.X.)
- Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.C.); (Q.Y.); (T.X.); (J.X.)
- Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Tiansheng Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.C.); (Q.Y.); (T.X.); (J.X.)
- Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.C.); (Q.Y.); (T.X.); (J.X.)
- Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.C.); (Q.Y.); (T.X.); (J.X.)
- Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
10
|
Jia S, Jia Z, An J, Ding Y, Chang J, Wang Y, Zhou X. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: From whole genome sequencing to quality changes. Int J Food Microbiol 2024; 416:110675. [PMID: 38479336 DOI: 10.1016/j.ijfoodmicro.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Jinghai Group Co., Ltd, Weihai 264307, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Zhifang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jun An
- Natural Medicine Institute of Zhejiang YangShengTang Co., Ltd., Hangzhou 310024, China.
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jie Chang
- Jinghai Group Co., Ltd, Weihai 264307, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| |
Collapse
|
11
|
Baptista RC, Oliveira RBA, Câmara AA, Lang É, Dos Santos JLP, Pavani M, Guerreiro TM, Catharino RR, Filho EGA, Rodrigues S, de Brito ES, Alvarenga VO, Bicca GB, Sant'Ana AS. Chilled Pacu (Piaractus mesopotamicus) fillets: Modeling Pseudomonas spp. and psychrotrophic bacteria growth and monitoring spoilage indicators by 1H NMR and GC-MS during storage. Int J Food Microbiol 2024; 415:110645. [PMID: 38430687 DOI: 10.1016/j.ijfoodmicro.2024.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (μmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √μ = 0.016 (T + 10.13) and √μ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo B A Oliveira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Antonio A Câmara
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | - Émilie Lang
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | | | - Matheus Pavani
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Elenilson G A Filho
- Department of Food Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Verônica O Alvarenga
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Ding J, Liao M, Wang Q. Co-regulation of Thermosensor Pathogenic Factors by C-di-GMP-Related Two-Component Systems and a cAMP Receptor-like Protein (Clp) in Stenotrophomonas maltophilia. Foods 2024; 13:1201. [PMID: 38672874 PMCID: PMC11049440 DOI: 10.3390/foods13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Stenotrophomonas maltophilia is a major threat to the food industry and human health owing to its strong protease production and biofilm formation abilities. However, information regarding regulatory factors or potential mechanisms is limited. Herein, we observed that temperature differentially regulates biofilm formation and protease production, and a cAMP receptor-like protein (Clp) negatively regulates thermosensor biofilm formation, in contrast to protease synthesis. Among four c-di-GMP-related two-component systems (TCSs), promoter fusion analysis revealed that clp transcription levels were predominantly controlled by LotS/LotR, partially controlled by both RpfC/RpfG and a novel TCS Sm0738/Sm0737, with no obvious effect caused by Sm1912/Sm1911. Biofilm formation in Δclp and ΔTCSs strains suggested that LotS/LotR controlled biofilm formation in a Clp-mediated manner, whereas both RpfC/RpfG and Sm0738/Sm0737 may occur in a distinct pathway. Furthermore, enzymatic activity analysis combined with c-di-GMP level indicated that the enzymatic activity of c-di-GMP-related metabolism proteins may not be a vital contributor to changes in c-di-GMP level, thus influencing physiological functions. Our findings elucidate that the regulatory pathway of c-di-GMP-related TCSs and Clp in controlling spoilage or the formation of potentially pathogenic factors in Stenotrophomonas expand the understanding of c-di-GMP metabolism and provide clues to control risk factors of S. maltophilia in food safety.
Collapse
Affiliation(s)
| | | | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.D.); (M.L.)
| |
Collapse
|
13
|
Liang Q, Hu X, Zhong B, Huang X, Wang H, Yu C, Tu Z, Li J. Regulating effects of low salt dry-curing pre-treatment on microbiota, biochemical changes and flavour precursors of grass carp ( Ctenopharyngodon idella) fillets during storage at 4 °C. Food Chem X 2024; 21:101188. [PMID: 38434696 PMCID: PMC10904891 DOI: 10.1016/j.fochx.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Low salt dry-curing (LSD), as a healthier pre-treatment for the preservation of fishery products, is a potential technique substitute for excessively salty curing. The regulatory effects of 2 % and 3 % LSD on the quality evolution through an intrinsic correlation between microbiota succession and flavour precursors of refrigerated grass carp fillets were investigated in this study. The results showed that the LSD pre-treatment was effective in promoting proteolysis, free amino acid and fatty acid metabolism with the microbiota succession and quality evolution. Compared with unpre-treated samples, the 3 % LSD pre-treatment effectively extended the shelf life by 10 days within the acceptable quality attributes. Not only did the LSD pre-treatment lead to catalytic microbiota succession and inhibitive spoilage substance production but it also improved the flavour precursors, which are taste-active amino acids and polyunsaturated fatty acids (PUFAs). Moreover, considerable correlations between quality attributes, taste-active amino acids, PUFAs and microbiota were obtained.
Collapse
Affiliation(s)
- Qingxi Liang
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bizhen Zhong
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengwei Yu
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zongcai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Jinlin Li
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
14
|
Liu L, Zhao Y, Zeng M, Xu X. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway. Food Res Int 2024; 178:113914. [PMID: 38309863 DOI: 10.1016/j.foodres.2023.113914] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
15
|
Guo C, Le Y, Lu Y, Yang H, He Y. Effect of oxygen supplement on post-mortem metabolic profile of shrimp during cold storage. Food Res Int 2024; 175:113734. [PMID: 38129045 DOI: 10.1016/j.foodres.2023.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Shrimp, renowned for its exceptional nutritional value, holds a pivotal position within the realm of aquatic products. The supplementation of extra oxygen to shrimp throughout the entire supply chain has found application within the commercial seafood market. In this study, a dual-platform metabolic analysis, coupled with multivariate data analysis, was employed to discern the impact of supplementary oxygen. Furthermore, this approach facilitated the construction of the post-mortem metabolic profile of shrimp during cold storage. A noticeable decrease of alcohols, ketones and carbohydrates which are related to the energy metabolism in shrimp has been found during cold storage, compared to the fresh shrimp. The degradation of nutritional amino acids was alleviated in shrimp after 4 h of extra oxygen supplement. Furthermore, a higher concentration of identified fatty acids, integral to lipid metabolism and functioning as flavor compounds was observed in shrimp subsequent to oxygen supplementation. Therefore, the additional oxygen supplementation exerted influence on multiple metabolic pathways, including nitrogen metabolism, amino acid and peptide metabolism, nucleotide metabolism, carbohydrate metabolism, and lipid metabolism. This study has constructed a comprehensive post-mortem metabolic profile of shrimp during cold storage, thereby establishing a theoretical foundation for the utilization of oxygen supplements in the preservation of seafood.
Collapse
Affiliation(s)
- Chenxi Guo
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; Department of Food Science and Technology, University of California, Davis 95616, CA, USA
| | - Yi Le
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang 312000, China.
| | - Yun He
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
16
|
Wang J, Xu J, Chao B, Liu H, Xie L, Qi H, Luo X. Hydrogen sulfide inhibits the rupture of fetal membranes throngh anti-aging pathways. Placenta 2023; 143:22-33. [PMID: 37793324 DOI: 10.1016/j.placenta.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION To investigate the relationship between hydrogen sulfide(H2S) and the senescence level of the fetal membranes, and to elucidate how H2S affects the integrity of the fetal membranes. METHODS The H2S and the senescence levels of fetal membranes, and the expressions of H2S synthase CBS and CSE were detected in the preterm (PT) group and the preterm premature ruptured membranes (pPROM) group. The effects of H2S donors and knockdown of CBS on the senescence level of amniotic epithelial cells, and the expression level of matrix metalloproteinases (MMPs) and epithelial-mesenchymal translation (EMT) were observed. RESULTS The level of H2S in the fetal membranes in the pPROM group is significantly lower than that in the PT group matched for gestational age. The level of H2S is negatively correlated with the senescence level of fetal membranes. Treatment with H2S donors reduced cell senescence and MMPs expression, but did not affect EMT. CBS siRNA transfection accelerated the senescence of amniotic epithelial cells, and promoted the expression of MMPs and EMT occurrence, but l-cysteine could reverse these effects. DISCUSSION Our study suggests that H2S, through its anti-aging effect, can influence the expression of MMPs and EMT, thereby contributing to the maintenance of fetal membrane integrity.
Collapse
Affiliation(s)
- Jie Wang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Jiacheng Xu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bingdi Chao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongli Liu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lumei Xie
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xin Luo
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023; 32:1005-1018. [PMID: 37215253 PMCID: PMC10195969 DOI: 10.1007/s10068-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myofibril proteins degradation constitutes an important factor in quality deterioration, procedural activation or inhibition of endogenous protease potential regulates autolytic proteolysis-induced softening of post mortem fish muscle. Based on the brief introduction of myofibril proteins degradation in fish skeletal muscle, a detailed description of the main myofibril degradation properties and the distinct role played by endogenous proteases were proposed, which reflects the limitations and challenges of the current research on myofibril hydrolysis mechanisms based on the varied surrounding conditions. In addition, the latest researches on the evaluation method of myofibril proteins degradation were comprehensively reviewed. The potential use of label-free proteomics combined with bioinformatics was also emphasized and has become an important means to in-depth understand protein degradation mechanism.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Engineering Research Center of Aquatic Product Processing and
Preservation, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment
Performance and Energy Saving Evaluation, Shanghai, 201306 China
| | - Yuan Ming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
18
|
Shang X, Wei Y, Guo X, Lei Y, Deng X, Zhang J. Dynamic Changes of the Microbial Community and Volatile Organic Compounds of the Northern Pike ( Esox lucius) during Storage. Foods 2023; 12:2479. [PMID: 37444217 DOI: 10.3390/foods12132479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the quality (sensory evaluation, microbial enumerate, color, tvb-n (total volatile basic nitrogen), tca-soluble peptide (trichloroacetic acid-soluble peptide), muscle glucose, lactate, total sugar, Bas (Biogenic amines), VOCs (volatile organic compounds) and the microbial dynamic structure in samples stored at 4 °C were evaluated, and the relationship between VOCs and the diversity structure of microorganisms was also discussed. It was determined by sensory evaluation that the shelf life of samples was around 8 days. Protein and sugar were detected in large quantities by microorganisms in the later stage. At the same time, this also caused a large amount of Bas (biogenic amines) (tyramine, cadaverine, and putrescine). According to high-throughput amplicon sequencing, the initial microbiota of samples was mainly composed of Pseudomonas, Acinetobacter, Planifilum, Vagococcus, Hafnia, Mycobacterium, Thauera, and Yersinia. Among them, Pseudomonas was the most advantageous taxon of samples at the end of the shelf life. The minor fraction of the microbial consortium consisting of Vagococcus, Acinetobacter and Myroides was detected. The substances 3-methyl-1-butanol, ethyl acetate, and acetone were the main volatile components. The glucose, lactic acid, and total sugar were negatively correlated with Yersinia, Hafnia-Obesumbacterium, Thauera, Mycobacterium, and Planifilum; the proportion of these microorganisms was relatively high in the early stage. TVB-N and TCA-soluble peptides were positively correlated with Pseudomonas, Shewanella, Brochothrix, Vagococcus, Myroides, and Acinetobacter, and these microorganisms increased greatly in the later stage. The substance 3-methyl-1-butanol was positively correlated with Pseudomonas and negatively correlated with Mycobacterium. Ethyl acetate was associated with Hafnia-Obesumbacterium, Thauera, and Yersinia. Acetone was positively correlated with Acinetobacter.
Collapse
Affiliation(s)
- Xuejiao Shang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| |
Collapse
|
19
|
Hyperspectral Imaging Coupled with Multivariate Analyses for Efficient Prediction of Chemical, Biological and Physical Properties of Seafood Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Zhuang S, Tian L, Liu Y, Wang L, Hong H, Luo Y. Amino acid degradation and related quality changes caused by common spoilage bacteria in chill-stored grass carp (Ctenopharyngodon idella). Food Chem 2023; 399:133989. [DOI: 10.1016/j.foodchem.2022.133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
|
21
|
Chen J, Tang H, Zhang M, Sang S, Jia L, Ou C. Exploration of the roles of microbiota on biogenic amines formation during traditional fermentation of Scomber japonicus. Front Microbiol 2022; 13:1030789. [PMID: 36406411 PMCID: PMC9667087 DOI: 10.3389/fmicb.2022.1030789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 09/11/2024] Open
Abstract
The influence of microbiota composition and metabolisms on the safety and quality of fermented fish products is attracting increasing attention. In this study, the total viable count (TVC), pH, total volatile base nitrogen (TVB-N) as well as biogenic amines (BAs) of traditional fermented Scomber japonicus (zaoyu) were quantitatively determined. To comprehend microbial community variation and predict their functions during fermentation, 16S rRNA-based high-throughput sequencing (HTS) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed, respectively. The fresh samples stored without fermentation were used as controls. TVC and TVB-N values increased rapidly, and the content of BAs exceeded the permissible limit on day 2 in the controls, indicating serious spoilage of the fish. In contrast, a slower increase in TVC and TVB-N was observed and the content of BAs was within the acceptable limit throughout the fermentation of zaoyu. Significant differences in microbiota composition were observed between zaoyu and the controls. The bacterial community composition of zaoyu was relatively simple and Lactobacillus was identified as the dominant microbial group. The accumulation of histamine was inhibited in zaoyu, which was positively correlated with the relative abundance of Vibrio, Enterobacter, Macrococcus, Weissella, et al. based on Redundancy analysis (RDA), while Lactobacillus showed a positive correlation with tyramine, cadaverine, and putrescine. Functional predictions, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, revealed that the relative abundance of metabolic function exhibited a decreasing trend with prolonged fermentation time and the abundance of metabolism-related genes was relatively stable in the later stage of fermentation. Those metabolisms related to the formation of BAs like histidine metabolism and arginine metabolism were inhibited in zaoyu. This study has accompanied microbiota analysis and functional metabolism with the accumulation of BAs to trace their correspondences, clarifying the roles of microorganisms in the inhibition of BAs during fermentation of Scomber japonicus.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Mengsi Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Qian Y, Li Y, Tang Z, Wang R, Zeng M, Liu Z. The role of AI-2/LuxS system in biopreservation of fresh refrigerated shrimp: Enhancement in competitiveness of Lactiplantibacillus plantarum for nutrients. Food Res Int 2022; 161:111838. [DOI: 10.1016/j.foodres.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
23
|
Development of a Multifunctional Edible Coating and Its Preservation Effect on Sturgeon ( Acipenser baeri♀× Acipenser schrenckii♂) Fillets during Refrigerated Storage at 4 °C. Foods 2022; 11:foods11213380. [PMID: 36359993 PMCID: PMC9655360 DOI: 10.3390/foods11213380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Although many coatings and films can improve the quality and shelf life of fish fillets during refrigerated storage, a more multifunctional coating material is needed. In this study, an edible alginate/protein-based coating solution was prepared by incorporating antimicrobial agents. The coating properties were characterized and its effects on the quality and shelf life of sturgeon fillets during refrigeration (4 °C) were investigated. Compared with sodium alginate coating (2% sodium alginate + antibacterial agents, H), the composite coatings (2% sodium alginate + antibacterial agents + 1:15 or 1:10 protein solution, HP-15 and HP-10) exhibited a more stable structure and better light, gas, and water barrier properties, and showed better quality-preservation effects on sturgeon fillets. The composite coatings treatments, especially HP-10 composite coating, exhibited significant (p < 0.05) effects in inhibiting microbial growth, maintaining sensory quality, reducing the production of total volatile basic nitrogen (TVB-N), decreasing nucleotide breakdown, and delaying the lipid oxidation and protein degradation in fillets. These findings confirm that the composite coatings can be used as a multifunctional coating material for freshness preservation of sturgeon fillets to improve quality and extend shelf life.
Collapse
|
24
|
Effect of CO 2 on the spoilage potential of Shewanella putrefaciens target to flavour compounds. Food Chem 2022; 397:133748. [PMID: 35905618 DOI: 10.1016/j.foodchem.2022.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.
Collapse
|
25
|
Çiçek S, Özoğul F. Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Crit Rev Food Sci Nutr 2022:1-24. [DOI: 10.1080/10408398.2022.2096563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
26
|
The HD-GYP domain protein of Shewanella putrefaciens YZ08 regulates biofilm formation and spoilage activities. Food Res Int 2022; 157:111466. [DOI: 10.1016/j.foodres.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
27
|
Fang J, Feng L, Lu H, Zhu J. Metabolomics reveals spoilage characteristics and interaction of Pseudomonas lundensis and Brochothrix thermosphacta in refrigerated beef. Food Res Int 2022; 156:111139. [DOI: 10.1016/j.foodres.2022.111139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
|
28
|
Li Q, Lu J, Chang Y, Shen G, Feng J. Effect of different cooking methods on nutritional intake and different storage treatments on nutritional losses of abalone. Food Chem 2022; 377:132047. [PMID: 35008016 DOI: 10.1016/j.foodchem.2022.132047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 01/01/2022] [Indexed: 11/26/2022]
Abstract
As the most important marine edible shellfish, the nutritional quality of abalone has been paid attention. In this study, the chemical and nutritional compositions of abalones were obtained, and three cooking methods, steaming, boiling and frying, were evaluated by in vitro gastric digestion simulation to understand their nutritional changes by 1H NMR spectroscopy combined with multivariate statistical analyses. The nutritional losses were also monitored under different cold storage conditions. The results indicated that boiling can keep more amino acids and fatty acids than steaming and frying, thus being recommended as the best cooking method of abalone. The abalone could maintain fresh within one day under 4 °C, and the deterioration process occurred subsequently. These results help to understand the digestion of cooked abalone and the changes of nutrients through storage and cooking process, leading to a scientific recommendation of cooking method and storage condition for healthy eating.
Collapse
Affiliation(s)
- Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resource Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
29
|
Yi Z, Xie J. Genomic Analysis of Two Representative Strains of Shewanella putrefaciens Isolated from Bigeye Tuna: Biofilm and Spoilage-Associated Behavior. Foods 2022; 11:foods11091261. [PMID: 35563985 PMCID: PMC9100107 DOI: 10.3390/foods11091261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Shewanella putrefaciens can cause the spoilage of seafood and shorten its shelf life. In this study, both strains of S. putrefaciens (YZ08 and YZ-J) isolated from spoiled bigeye tuna were subjected to in-depth phenotypic and genotypic characterization to better understand their roles in seafood spoilage. The complete genome sequences of strains YZ08 and YZ-J were reported. Unique genes of the two S. putrefaciens strains were identified by pan-genomic analysis. In vitro experiments revealed that YZ08 and YZ-J could adapt to various environmental stresses, including cold-shock temperature, pH, NaCl, and nutrient stresses. YZ08 was better at adapting to NaCl stress, and its genome possessed more NaCl stress-related genes compared with the YZ-J strain. YZ-J was a higher biofilm and exopolysaccharide producer than YZ08 at 4 and 30 °C, while YZ08 showed greater motility and enhanced capacity for biogenic amine metabolism, trimethylamine metabolism, and sulfur metabolism compared with YZ-J at both temperatures. That YZ08 produced low biofilm and exopolysaccharide contents and displayed high motility may be associated with the presence of more a greater number of genes encoding chemotaxis-related proteins (cheX) and low expression of the bpfA operon. This study provided novel molecular targets for the development of new antiseptic antisepsis strategies.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
- Correspondence: ; Tel.: +86-02161900391
| |
Collapse
|
30
|
Exploration of the roles of spoilage bacteria in degrading grass carp proteins during chilled storage: A combined metagenomic and metabolomic approach. Food Res Int 2022; 152:110926. [DOI: 10.1016/j.foodres.2021.110926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
|
31
|
Yi Z, Xie J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Yi Z, Xie J. Comparative Proteomics Reveals the Spoilage-Related Factors of Shewanella putrefaciens Under Refrigerated Condition. Front Microbiol 2021; 12:740482. [PMID: 34925259 PMCID: PMC8678035 DOI: 10.3389/fmicb.2021.740482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella putrefaciens is a microorganism with strong spoilage potential for aquatic products. This study aimed to investigate the potential spoilage factors of S. putrefaciens by comparative proteomic analysis. The spoilage potential of two strains of S. putrefaciens (00A and 00B) isolated from chilled spoiled bigeye tuna was investigated. The results of total volatile basic nitrogen (TVB-N), trimethylamine (TMA) in fish inoculated with S. putrefaciens, extracellular protease activity of S. putrefaciens, and degradation of fish proteins indicated that the spoilage potential of S. putrefaciens 00A was much higher than that of 00B. Fish proteins are usually degraded by spoilage microorganism proteases into small molecular peptides and amino acids, which are subsequently degraded into spoilage metabolites in bacterial cells, leading to deterioration of fish quality. Thus, proteomic analysis of the extracellular and intracellular proteins of 00A vs. 00B was performed. The results indicated that the intracellular differentially expressed protein (IDEP) contained 243 upregulated proteins and 308 downregulated proteins, while 78 upregulated proteins and 4 downregulated proteins were found in the extracellular differentially expressed protein (EDEP). GO annotation revealed that IDEP and EDEP were mainly involved in cellular and metabolic processes. KEGG annotation results showed that the upregulated proteins in IDEP were mainly involved in sulfur metabolism, amino acid metabolism, and aminoacyl-tRNA biosynthesis, while downregulated proteins were related to propanoate metabolism. In contrast, EDEP of KEGG annotation was mainly involved in ribosomes, quorum sensing, and carbohydrate metabolism. Proteins associated with spoilage containing sulfur metabolism (sulfite reductase, sulfate adenylyltransferase, adenylyl-sulfate kinase), amino acid metabolism (biosynthetic arginine decarboxylase, histidine ammonia-lyase), trimethylamine metabolism (trimethylamine-N-oxide reductase), and extracellular proteins (ATP-dependent Clp protease proteolytic subunit) were identified as upregulated. These proteins may play a key role in the spoilage potential of S. putrefaciens. These findings would contribute to the identification of key spoilage factors and understanding of the spoilage mechanism of microorganisms.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
33
|
Yu D, Zhao W, Dong J, Zang J, Regenstein JM, Jiang Q, Xia W. Multifunctional bioactive coatings based on water-soluble chitosan with pomegranate peel extract for fish flesh preservation. Food Chem 2021; 374:131619. [PMID: 34810018 DOI: 10.1016/j.foodchem.2021.131619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to reveal the effects of vacuum-impregnated carboxymethyl chitosan (CMCS) coating with pomegranate peel extract (PPE) on quality retention of fish flesh during refrigeration. Herein, CMCS-PPE coating was effective in attenuating quality loss of grass carp fillets. Compared to Control, the levels of drip loss, total volatile base nitrogen, and K value in coated samples were sharply decreased (p < 0.05) by 24.5%, 35.3% and 25.2% on day 9, respectively. Meanwhile, the coating also helped inhibit oxidation, bioamine accumulation, and texture softening in fillets. Moreover, the microbial enumeration was reduced by >1.4 lg cfu/g as compared to Control on day 6 afterward, and high throughput sequencing analysis further showed the active coating contributed to the notable growth suppression of spoilage bacteria like Shewanella. Additionally, the positive effect of the coating scheme was also verified in longsnout catfish and snakehead, further confirming its good applicability for fish flesh preservation.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junli Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinhong Zang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Joe M Regenstein
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science, Cornell University, Ithaca NY14850, USA
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
34
|
Zhuang S, Hong H, Zhang L, Luo Y. Spoilage‐related microbiota in fish and crustaceans during storage: Research progress and future trends. Compr Rev Food Sci Food Saf 2020; 20:252-288. [DOI: 10.1111/1541-4337.12659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|