1
|
Xue TT, Zheng DX, Hou Q, Wen LM, Wang BJ, Geng RY, Wang QQ, Dai W, Tian LY, He SQ, Yang JH, Hu JP. Optimization of Extraction Process, Structural Characterization, and Antioxidant and Hypoglycemic Activity Evaluation of Polysaccharides From the Medicinal and Edible Plant: Cistanche deserticola Ma. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39853820 DOI: 10.1002/pca.3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
INTRODUCTION Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects. OBJECTIVE This study seeks to identify the optimal conditions for extracting CDPs using hot water. Additionally, it aims to evaluate their chemical properties, antioxidant activity, hypoglycemic effects, and cytotoxicity. The findings will provide a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals. METHODOLOGY The study employed response surface methodology to optimize the hot water extraction conditions for CDPs. The extracted CDPs were characterized using a range of chemical, spectroscopic, and instrumental analyses. Furthermore, their antioxidant activity, hypoglycemic effects, and cytotoxicity were evaluated through relevant assays to assess their potential health benefits. RESULTS Under optimal conditions, the yield of CDPs was 45.85% ± 1.91%. CDPs were identified as acidic heteropolysaccharides with a wide molecular weight distribution, ranging from 0.3 to 128.2 kDa. They were composed primarily of glucose (51.21%), arabinose (32.86%), galactose (17.88%), and smaller amounts of galacturonic acid (4.66%), rhamnose (1.85%), mannose (1.32%), glucosamine hydrochloride (1.08%), and xylose (0.56%). Antioxidant assays demonstrated that CDPs exhibited significant free radical scavenging activity, metal ion chelation, and reducing power. Additionally, CDPs inhibited α-glucosidase and α-amylase in vitro through a mixed-type mechanism, as well as static fluorescence quenching. Cytotoxicity assays showed that CDPs were nontoxic to L02 and AML12 cells. CONCLUSION This study offers a theoretical foundation for the potential use of CDPs in functional foods and pharmaceuticals and provides valuable insights for the development of new antioxidant and hypoglycemic agents from natural sources.
Collapse
Affiliation(s)
- Tao-Tao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Dong-Xuan Zheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Li-Mei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, China
| | - Bao-Juan Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, China
| | - Ruo-Yu Geng
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Qian-Qian Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Wu Dai
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Li-Ying Tian
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Sheng-Qi He
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, China
| | - Jun-Ping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, China
| |
Collapse
|
2
|
Krivošija S, Nastić N, Karadžić Banjac M, Kovačević S, Podunavac-Kuzmanović S, Vidović S. Supercritical Extraction and Compound Profiling of Diverse Edible Mushroom Species. Foods 2025; 14:107. [PMID: 39796397 PMCID: PMC11720195 DOI: 10.3390/foods14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO2) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material. Using Sc-CO2, the extracts of five types of edible mushrooms-Lycoperdon saccatum, Pleurotus ostreatus, Craterellus cornucopioides, Russula Cyanoxantha and Cantharellus cibarius-were obtained. During the Sc-CO2 process, the extraction time was reduced to 4 h compared to the prolonged process time applied in the typical traditional techniques (6-24 h). The extraction pressure (30 MPa) and temperature (40 °C) were constant. Fatty acids and the compounds of steroid structures were determined in the obtained extracts using GC-MS and GC-FID methods of analysis. The dominant compounds identified in the lipid extracts were fatty acids (linoleic, oleic, palmitic and stearic) and sterols (ergosterol, 7,22-ergostadienone and 7,22-ergostadienol). For complete insight into the process and to obtain the value of the extracts, chemometric analysis is provided. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), as well as k-means clustering, showed that Craterellus cornucopioides was distinguished based on the extraction yield results.
Collapse
Affiliation(s)
| | | | | | | | | | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (N.N.); (M.K.B.); (S.K.); (S.P.-K.)
| |
Collapse
|
3
|
Loke G, Chandrapala J, Besnard A, Kantono K, Brennan C, Newman L, Low J. Food odour perception and affective response in Virtual spacecraft and microgravity body posture (1-G) - Potential ground-based simulations. Food Res Int 2024; 197:115260. [PMID: 39577930 DOI: 10.1016/j.foodres.2024.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
This study investigates food odour perception and affective response within a virtually simulated spacecraft environment, with links to the volatile composition of odours. Healthy participants (n = 44) between the ages of 18-39 years rated the intensity of eight food odours in two simulated space environments for comparison, a 'microgravity' posture (MicroG Posture; physical) and Virtual Reality (VR; visual-spatial cues) simulation of a spacecraft. Results indicate that these methods yield different outcomes. Particularly, odour intensity perception was significantly higher in VR compared to the MicroG Posture for all odours (p < 0.05), except lemongrass. Moreover, individual differences in odour sensitivity were observed, with low-sensitive individuals (n = 14) perceiving stronger almond odour (p < 0.001) and highly sensitive individuals (n = 29) perceiving stronger vinegar odour (p = 0.003) in VR. Emotional dimensions of valence and arousal were also significantly higher (p < 0.001) in VR, while stress response remained low across contexts (all p > 0.05). While emotional and stress responses did not generally affect odour intensity perception, valence was positively correlated with almond and vinegar odour perception, while stress was negatively correlated with vinegar odour perception. These findings suggest that odour perception and affective response may vary in virtual space contexts, with certain individuals exhibiting sensitivity to specific odours due to their unique flavour profiles. This highlights how confined, cluttered environments, reminiscent of space conditions, affect sensory responses to food, with implications for personalised dietary interventions and improved well-being in similar populations.
Collapse
Affiliation(s)
- Grace Loke
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Anne Besnard
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Kevin Kantono
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Charles Brennan
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Lisa Newman
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Julia Low
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia.
| |
Collapse
|
4
|
El Maimouni MA, El Amrani S, Fadil M, Menyiy N, Bouslamti R, Annemer S, Lairini S, El Ouali Lalami A. Chemical Composition, Antioxidant Activity, and Multivariate Analysis of Four Moroccan Essential Oils: Mentha piperita, Mentha pulegium, Thymus serpyllum, and Thymus zygis. ScientificWorldJournal 2024; 2024:5552496. [PMID: 39633960 PMCID: PMC11617051 DOI: 10.1155/tswj/5552496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Food chemical antioxidants have demonstrated protective effects against reactive oxygen species and free radicals, but present in excess, harmful consequences might occur on health. Therefore, replacing these synthetic additives with nontoxic natural antioxidants is crucial. Objective: The current study examined aroma profile, antioxidant activity, and multivariate analysis of Mentha piperita, Mentha pulegium, Thymus serpyllum, and Thymus zygis essential oils from Morocco. Methods: GC-MS analysis was carried out to determine the chemical composition of the four oils, and their antioxidant activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH), cation radical (ABTS+), hydrogen peroxide scavenging capacity (H2O2), ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC) methods. Results: Isomintlactone (35.55%), pulegone (74.04%), borneol (37.87%), and borneol (30.99%) were the most abundant compounds of M. piperita, M. pulegium, T. serpyllum, and T. zygis EOs. The antioxidant activity of the four EOs was particularly notable, with an IC50 varying between 3.51 ± 0.22 mg/mL and 0.49 ± 0.08 mg/mL by the DPPH method, 1.02 ± 0.21 mg/mL and 0.4 ± 0.7 mg/mL by the ABTS method, and 0.063 ± 0.01 mg/mL and 0.009 ± 0.008 mg/mL by the H2O2 method. For the FRAP technique, the EC50 was between 0.42 ± 0.02 mg/mL and 0.09 ± 0.01 mg/mL. Finally, the equivalent concentration of ascorbic acid ranged between 10.42 ± 0.03 mg AAs/mL for M. piperita and 7.25 ± 0.19 mg AAs/mL for T. serpyllum. As determined by multivariate analysis, antioxidant activities through the DPPH, ABTS, TAC, and FRAP were mainly influenced the major compounds of M. pulegium and M. piperita EOs. However, the H2O2 method showed a stronger positive correlation with major compounds of T. zygis EO. Conclusion: The EOs derived from M. piperita, M. pulegium, T. serpyllum, and T. zygis species might be exploited as a natural source for antioxidant activity.
Collapse
Affiliation(s)
- Mohamed Amine El Maimouni
- Materials, Processes, Catalysis and Environment Laboratory, Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Soukaina El Amrani
- Materials, Processes, Catalysis and Environment Laboratory, Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Mouhcine Fadil
- Physio-Chemical Laboratory of Organic and Inorganic Materials, Materials Science Center (MSC), Ecole Normale Supérieure, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual Menyiy
- Pharmacology Laboratory, National Agency for Medicinal and Aromatic Plants, 159 Taounate Principale, Taounate 34000, Morocco
| | - Rabia Bouslamti
- Materials, Processes, Catalysis and Environment Laboratory, Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Saoussan Annemer
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Sanae Lairini
- Materials, Processes, Catalysis and Environment Laboratory, Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Abdelhakim El Ouali Lalami
- Materials, Processes, Catalysis and Environment Laboratory, Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Fez, Regional Direction of Health, El Ghassani Hospital-Dhar El Mehraz, Fez 30000, Morocco
| |
Collapse
|
5
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Li S, Yan J, Yang J, Chen G, McClements DJ, Ma C, Liu X, Liu F. Modulating peppermint oil flavor release properties of emulsion-filled protein gels: Impact of cross-linking method and matrix composition. Food Res Int 2024; 185:114277. [PMID: 38658069 DOI: 10.1016/j.foodres.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.
Collapse
Affiliation(s)
- Siqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junhao Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guipan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Mrkonjić Ž, Kaplan M, Milošević S, Božović D, Sknepnek A, Miletić D, Lazarević Mrkonjić I, Rakić D, Zeković Z, Pavlić B. Green Extraction Approach for Isolation of Bioactive Compounds in Wild Thyme ( Thymus serpyllum L.) Herbal Dust-Chemical Profile, Antioxidant and Antimicrobial Activity and Comparison with Conventional Techniques. PLANTS (BASEL, SWITZERLAND) 2024; 13:897. [PMID: 38592878 PMCID: PMC10975124 DOI: 10.3390/plants13060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The aim of this study was to provide a chemical profile and determine the antioxidant and antimicrobial activity of the essential oil (EO) and lipid extracts of Thymus serpyllum L. herbal dust obtained via conventional (hydrodistillation (HD) and Soxhlet extraction (SOX)) and novel extraction techniques (supercritical fluid extraction (SFE)). In addition, a comparative analysis of the chemical profiles of the obtained EO and extracts was carried out, as well as the determination of antioxidant, antibacterial and antifungal activity of the lipid extracts. According to the aforementioned antioxidant and antimicrobial activities and the monoterpene yield and selectivity, SFE provided significant advantages compared to the traditional techniques. In addition, SFE extracts could be considered to have great potential in terms of their utilization in the pharmaceutical and cosmetic industries, as well as appropriate replacements for synthetic additives in the food industry.
Collapse
Affiliation(s)
- Živan Mrkonjić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Muammer Kaplan
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Danica Božović
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Aleksandra Sknepnek
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (D.M.)
| | - Dunja Miletić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (D.M.)
| | - Ivana Lazarević Mrkonjić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Dušan Rakić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| |
Collapse
|
9
|
Kanwal S, Ahmad S, Yasmin Begum M, Siddiqua A, Rao H, Ghalloo BA, Shahzad MN, Ahmad I, Khan KUR. Chemical Profiling, in-vitro biological evaluation and molecular docking studies of Ruellia tweediana: An unexplored plant. Saudi Pharm J 2024; 32:101939. [PMID: 38261891 PMCID: PMC10797148 DOI: 10.1016/j.jsps.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
Many Ruellia species have been utilized in traditional medicine and despite the prevalent use of Ruellia tweediana in folk medicine, its antioxidant potential and polyphenol content have not been investigated. Therefore, the present study aimed to explore the medicinal value of R. tweediana by evaluating its total phenolic (TPC) and flavonoid contents (TFC), GC-MS analysis, antioxidant, antibacterial, and enzyme inhibition activities. The TPC and TFC of the extract/fractions were assessed using the Folin-Ciocalteu and aluminum trichloride methods, respectively. To determine the antioxidant capacity, five different assays were used: DPPH, ABTS, CUPRAC, FRAP, and metal chelating assays. The inhibition activity against α-glucosidase, α-amylase, cholinesterases, and lipoxygenase enzymes was also analyzed. Furthermore, GC-MS was performed for chemical screening of non-polar fraction. The methanol extract showed the maximum TPC (167.34 ± 2.23 mg GAE/g) and TFC (120.43 ± 1.71 mg RE/g) values among all the tested samples. GC-MS screening of the n-hexane fraction showed the presence of 40 different phytoconstituents. The results demonstrated the highest scavenging potential of the methanol extract against DPPH (167.79 ± 2.75 mg TE/g) and ABTS (255.32 ± 2.91 mg TE/g) radicals, as well as the metal-reducing capacity measured by CUPRAC (321.34 ± 3.09 mg TE/g), FRAP (311.32 ± 2.91 mg TE/g), and metal chelating assay (246.78 ± 10.34 mg EDTAE/g). Notably, the n-hexane fraction revealed the highest α-glucosidase and α-amylase inhibition activity (186.8 ± 2.84 and 179.7 ± 4.32 mg ACAE/g, respectively) while methanol extract showed highest acetylcholinesterase and butyrylcholinesterase inhibition activity (198.6 ± 3.31 and 184.3 ± 2.92 mg GALE/g, respectively). The GC-MS identified Lupeol showed best binding affinity with all docked enzymes as compared to standard compounds. The presence of bioactive phytoconstituents showed by GC-MS underscores the medicinal importance of R. tweediana, making it a promising candidate for natural medicine.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72404, United States of America
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Abha 61421, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Huma Rao
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55454, United States of America
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Imtiaz Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Primary & Secondary Health Department, Punjab 54000, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Kaszuba J, Jańczak-Pieniążek M, Migut D, Kapusta I, Buczek J. Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods 2024; 13:357. [PMID: 38338493 PMCID: PMC10855404 DOI: 10.3390/foods13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Consumers' growing awareness of healthy nutrition results in an increase in demand for the production of beverages with health-promoting properties. An example of such a product is kvass produced in the fermentation process. This research aimed to determine the impact of plant additives on the antioxidant and sensorial properties of kvass made from bread based on mountain rye flour. The bread extract was fermented at different temperatures (28 and 34 °C). Additives of 3, 5, and 10% were used in the tests, which included black chokeberry juice and infusion, sea buckthorn fruit juice and infusion, and peppermint leaf infusion. A higher fermentation temperature in the production process resulted in an improvement in the organoleptic and antioxidant properties of the tested kvasses. The highest antioxidant activity was demonstrated by kvass with the addition of 10% black chokeberry juice (0.734 µmol Trolox g-1 (ABTS), 4.90 µmol of Trolox g-1 (DPPH)), and a peppermint leaf infusion (0.773 µmol Trolox g-1 (ABTS), 4.71 µmol Trolox g-1 (DPPH)). The conditions of kvass production and the type and amount of the additive influenced the selected physicochemical parameters of the obtained kvasses. The chromatographic analysis confirmed the content of 13 phenolic compounds in kvass with the addition of black chokeberry juice, which was 1.68-1.73 mg/100 mL of the finished product with a 10% share of the additive. The 11 phenolic compounds in kvass with the addition of peppermint infusion were confirmed for 7.65-6.86 mg/100 mL of the finished product with 10% of the additive. Kvass enriched with additives from black chokeberry fruit and peppermint leaves may be a promising new category of functional beverages with health-promoting properties resulting from the content of polyphenol compounds. It could be a better base for enrichment with raw materials that are richer in these compounds than pasteurized products.
Collapse
Affiliation(s)
- Joanna Kaszuba
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland;
| | - Marta Jańczak-Pieniążek
- Department of Crop Production, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland; (M.J.-P.); (D.M.); (J.B.)
| | - Dagmara Migut
- Department of Crop Production, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland; (M.J.-P.); (D.M.); (J.B.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland;
| | - Jan Buczek
- Department of Crop Production, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland; (M.J.-P.); (D.M.); (J.B.)
| |
Collapse
|
11
|
Zhuang S, Yun H, Zhou X, Li Y, Li S, Liu C, Zhang Y. Screening, isolation, and activity evaluation of potential xanthine oxidase inhibitors in Poria Cum Radix Pini and mechanism of action in the treatment of gout disease. J Sep Sci 2024; 47:e2300505. [PMID: 38135883 DOI: 10.1002/jssc.202300505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
Poria Cum Radix Pini is a rare medicinal fungus that contains several potential therapeutic ingredients. On this basis, a particle swarm mathematical model was used to optimize the extraction process of total triterpenes from P. Cum Radix Pini, and xanthine oxidase inhibitors were screened using affinity ultrafiltration mass spectrometry. Meanwhile, the accuracy of the ultrafiltration assay was verified by molecular docking experiments and molecular dynamics analysis, and the mechanism of action of the active compounds for the treatment of gout was analyzed by enzymatic reaction kinetics and network pharmacology. A high-speed countercurrent chromatography method combined with the consecutive injection and the economical two-phase solvent system preparation using functional activity coefficient of universal quasichemical model (UNIFAC) mathematical model was developed for increasing the yield of target compound. In addition, dehydropachymic acid and pachymic acid were used as competitive inhibitors, and 3-O-acetyl-16alpha-hydroxydehydrotrametenolic acid and dehydrotrametenolic acid were used as mixed inhibitors. Then, activity-oriented separation and purification were performed by high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography and the purity of the four compounds isolated was higher than 90%. It will help to provide more opportunities to discover and develop new potential therapeutic remedies from health care food resources.
Collapse
Affiliation(s)
- Siyuan Zhuang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Haocheng Yun
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| |
Collapse
|
12
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
13
|
Marques SDPPM, Pinheiro RO, do Nascimento RA, Andrade EHDA, de Faria LJG. Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules 2023; 28:7583. [PMID: 38005307 PMCID: PMC10675317 DOI: 10.3390/molecules28227583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, we assessed the effects of different harvest times (9 a.m., 1 p.m., and 5 p.m.) and hydrodistillation times (60, 90, and 120 min) on the yield, chemical composition, and antioxidant activity of the spearmint (Mentha spicata L.) essential oil (EO) sourced from the Amazon region. EO yield was ≥1.55% and was not significantly influenced (p ≥ 0.05) by the different harvest times and hydrodistillation times. Thirty-one different organic compounds were identified, of which menthol (91.56-95.68%), menthone (0.6-2.72%), and isomenthone (0.55-1.46%) were the major constituents. The highest menthol content in the EO was obtained from samples collected at 9 a.m., with a hydrodistillation time of 60-90 min, compared to other harvest and hydrodistillation times. This suggests that exposure to sun and light, which is greater at harvest times of 1 p.m. and 5 p.m., decreased the menthol content and altered the chemical composition of Mentha EO. Furthermore, the sample harvested at 9 a.m. and hydrodistilled for 60 min showed the highest antioxidant activity (61.67 equivalent mg of Trolox per g of EO), indicating that antioxidant activity is strongly affected by light exposure and the contact duration of the sample with boiling water during hydrodistillation.
Collapse
Affiliation(s)
| | | | - Rafael Alves do Nascimento
- Programa de Pós-Graduação em Engenharia dos Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
| | | | - Lênio José Guerreiro de Faria
- Programa de Pós-Graduação em Engenharia dos Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
- Faculdade de Engenharia Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
| |
Collapse
|
14
|
Fakhri LA, Ghanbarzadeh B, Falcone PM. New Healthy Low-Sugar and Carotenoid-Enriched/High-Antioxidant Beverage: Study of Optimization and Physicochemical Properties. Foods 2023; 12:3265. [PMID: 37685198 PMCID: PMC10486365 DOI: 10.3390/foods12173265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Lutein is a prominent biologically active carotenoid pigment with a polyene skeleton that has great benefits for human health. The study examined the synergistic effects of potentially functional components, including lutein carotenoid (LC), Mentha × Piperita extract (MPE), and Citrus × aurantifolia essential oil (CAEO), all three as bioactive components and antioxidants (AOs), on the physicochemical characteristics of a new low-sugar and carotenoid-enriched high-antioxidant beverage. Sucralose was utilized as a non-nutritive sweetener. Polynomial equations obtained by combined design methodology (CDM) were fitted to the experimental data of total phenolic and flavonoid contents (TPC and TFC, respectively) and antioxidant potential of the beverages using multiple regression analysis with R2 (determination coefficient) values of 0.87, 0.89, and 0.97, respectively. Estimated response values for the TPC, TFC, and antioxidant potential (determined as 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging activity) of the optimum beverage formulation were 41.90 mg gallic acid equivalent (GAE) per L-1, 27.51 mg quercetin equivalent (QE) per L-1, and 34.06%, respectively, with a desirability value of 0.74. The potentially functional components had a synergistic effect on the antioxidant potential. This healthy beverage can have the potential to enhance health benefits and may have therapeutic potential for diabetic patients.
Collapse
Affiliation(s)
- Leila Abolghasemi Fakhri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Pasquale M. Falcone
- Department of Agricultural, Food, and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
15
|
Wang X, Yang Z, Shen S, Ji X, Chen F, Liao X, Zhang H, Zhang Y. Inhibitory effects of chlorophylls and its derivative on starch digestion in vitro. Food Chem 2023; 413:135377. [PMID: 36773358 DOI: 10.1016/j.foodchem.2022.135377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Chlorophylls (Chls) have been shown to help regulate blood glucose levels. In this study, the effects of Chls and its derivative, pheophytin a (Phe a), on starch digestion in vitro were investigated. Chls significantly decreased starch hydrolysis while increasing resistant starch content (p < 0.05). SEM revealed that Chls either existed in free form or was absorbed and embedded on the surface of starch granules. Spectroscopic analysis and molecular docking demonstrated that Chls had a dual effect: (1) the phytol chain of Chls formed a double helix structure with starch, which may hinder the starch-enzyme contacts; and (2) the porphyrin ring of Chls interacted with amino acid residues of α-amylase and α-glucosidase to change the characteristics of enzymes, thereby inhibiting their activities. The investigation may serve as motivation for developing healthful starchy foods rich in Chls and enhancing the selection of foods for diabetics and hyperglycemias.
Collapse
Affiliation(s)
- Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen 518083, China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China.
| |
Collapse
|
16
|
Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, Binothman N, Aljadani M, Majrashi KA, Huwaikem M, Abourehab MAS, Korma SA, El-Saadony MT. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front Nutr 2023; 10:1125106. [PMID: 37415912 PMCID: PMC10320526 DOI: 10.3389/fnut.2023.1125106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Department of Food Technology, Institute of Food and Nutrition, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael Huwaikem
- Cinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
García-Sarrió MJ, Sanz ML, Palá-Paúl J, Díaz S, Soria AC. Optimization of a Green Microwave-Assisted Extraction Method to Obtain Multifunctional Extracts of Mentha sp. Foods 2023; 12:foods12102039. [PMID: 37238857 DOI: 10.3390/foods12102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A microwave-assisted extraction (MAE) procedure has been optimized to simultaneously provide multifunctional extracts of Mentha sp. leaves with improved antioxidant properties and, for the first time, with optimal antimicrobial activity. Among the solvents evaluated, water was selected as the extractant in order to develop a green procedure and also for its improved bioactive properties (higher TPC and Staphylococcus aureus inhibition halo). MAE operating conditions were optimized by means of a 3-level factorial experimental design (100 °C, 14.7 min, 1 g of dry leaves/12 mL of water and 1 extraction cycle), and further applied to the extraction of bioactives from 6 different Mentha species. A comparative LC-Q MS and LC-QToF MS analysis of these MAE extracts was carried out for the first time in a single study, allowing the characterization of up to 40 phenolics and the quantitation of the most abundant. Antioxidant, antimicrobial (Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) and antifungal (Candida albicans) activities of MAE extracts depended on the Mentha species considered. In conclusion, the new MAE method developed here is shown as a green and efficient approach to provide multifunctional Mentha sp. extracts with an added value as natural food preservatives.
Collapse
Affiliation(s)
- María J García-Sarrió
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María L Sanz
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Palá-Paúl
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Silvia Díaz
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana C Soria
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
18
|
Trifan A, Zengin G, Korona-Glowniak I, Skalicka-Woźniak K, Luca SV. Essential Oils and Sustainability: In Vitro Bioactivity Screening of Myristica fragrans Houtt. Post-Distillation By-Products. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091741. [PMID: 37176799 PMCID: PMC10181112 DOI: 10.3390/plants12091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The essential oil of Myristica fragrans Hutt. (nutmeg) is an important commodity used as a flavoring agent in the food, pharmaceutical, and cosmetic fields. Hydrodistillation is chiefly employed at the industrial scale for nutmeg essential oil isolation, but such a technique generates large quantities of post-distillation by-products (e.g., spent plant material and residual distillation water). Therefore, our work aimed to propose a novel strategy for the valorization of nutmeg wastes, with beneficial economic and ecological advantages. Thus, the current study assessed the phytochemical (GC-MS, LC-HRMS/MS) and biological (antioxidant, enzyme inhibitory, antimicrobial) profile of nutmeg crude materials (essential oil and total extract) and post-distillation by-products (residual water and spent material extract). Identified in these were 43 volatile compounds, with sabinene (21.71%), α-pinene (15.81%), myristicin (13.39%), and β-pinene (12.70%) as the main constituents. LC-HRMS/MS analysis of the nutmeg extracts noted fifteen metabolites (e.g., organic acids, flavonoids, phenolic acids, lignans, and diarylnonanoids). Among the investigated nutmeg samples, the spent material extract was highlighted as an important source of bioactive compounds, with a total phenolic and flavonoid content of 63.31 ± 0.72 mg GAE/g and 8.31 ± 0.06 mg RE/g, respectively. Moreover, it showed prominent radical-scavenging and metal-reducing properties and significantly inhibited butyrylcholinesterase (4.78 ± 0.03 mg GALAE/g). Further, the spent material extract displayed strong antimicrobial effects against Streptococcus pneumoniae, Micrococcus luteus, and Bacillus cereus (minimum inhibitory concentrations of 62.5 mg/L). Overall, our study brings evidence on the health-promoting (antioxidant, anti-enzymatic, antimicrobial) potential of nutmeg post-distillation by-products with future reference to their valorization in the pharmaceutical, cosmeceutical, and food industries.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
19
|
Pavlić B, Kaplan M, Zeković Z, Canli O, Jovičić N, Bursać Kovačević D, Bebek Markovinović A, Putnik P, Bera O. Kinetics of Microwave-Assisted Extraction Process Applied on Recovery of Peppermint Polyphenols: Experiments and Modeling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1391. [PMID: 36987079 PMCID: PMC10053306 DOI: 10.3390/plants12061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The aim of this work was to investigate the microwave-assisted extraction (MAE) kinetics of polyphenolic compounds from organic peppermint leaves. The phytochemicals of peppermint (Mentha piperita L.) are increasingly used in food technology due to their numerous biological activities. The processing of various plant materials by MAE and the production of high-quality extracts is becoming increasingly important. Therefore, the influence of microwave irradiation power (90, 180, 360, 600, and 800 W) on total extraction yield (Y), total polyphenols yield (TP), and flavonoid yield (TF) were investigated. Common empirical models (first-order, Peleg's hyperbolic, Elovich's logarithmic, and power-law model) were applied to the extraction process. The first-order kinetics model provided the best agreement with the experimental results in terms of statistical parameters (SSer, R2, and AARD). Therefore, the influences of irradiation power on the adjustable model parameters (k and Ceq) were investigated. It was found that irradiation power exerted a significant influence on k, while its influence on the asymptotic value of the response was negligible. The highest experimentally determined k (2.28 min-1) was obtained at an irradiation power of 600 W, while the optimal irradiation power determined by the maximum fitting curve determination predicted the highest k (2.36 min-1) at 665 W.
Collapse
Affiliation(s)
- Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Muammer Kaplan
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, P.O. Box 21, Gebze 41470, Kocaeli, Turkey
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Oltan Canli
- TUBITAK Marmara Research Centre, Environment and Cleaner Production Institute, P.O. Box 21, Gebze 41470, Kocaeli, Turkey
| | - Nebojša Jovičić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Oskar Bera
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| |
Collapse
|
20
|
Chávez-Delgado EL, Jacobo-Velázquez DA. Essential Oils: Recent Advances on Their Dual Role as Food Preservatives and Nutraceuticals against the Metabolic Syndrome. Foods 2023; 12:1079. [PMID: 36900596 PMCID: PMC10000519 DOI: 10.3390/foods12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Essential oils (EO) are compounds synthesized by plants as secondary products and are a complex mixture of volatile molecules. Studies have demonstrated their pharmacological activity in the prevention and treatment of metabolic syndrome (MetS). Moreover, they have been used as antimicrobial and antioxidant food additives. The first part of this review discusses the role of EO as nutraceuticals to prevent metabolic syndrome-related disorders (i.e., obesity, diabetes, and neurodegenerative diseases), showing results from in vitro and in vivo studies. Likewise, the second part describes the bioavailability and mechanisms of action of EO in preventing chronic diseases. The third part presents the application of EO as food additives, pointing out their antimicrobial and antioxidant activity in food formulations. Finally, the last part explains the stability and methods for encapsulating EO. In conclusion, EO dual role as nutraceuticals and food additives makes them excellent candidates to formulate dietary supplements and functional foods. However, further investigation is needed to understand EO interaction mechanisms with human metabolic pathways and to develop novel technological approaches to enhance EO stability in food systems to scale up these processes and, in this way, to overcome current health problems.
Collapse
Affiliation(s)
- Emily L. Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
21
|
Šojić B, Milošević S, Savanović D, Zeković Z, Tomović V, Pavlić B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023; 28:molecules28052293. [PMID: 36903538 PMCID: PMC10005741 DOI: 10.3390/molecules28052293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Using food additives (e.g., preservatives, antioxidants) is one of the main methods for preserving meat and meat product quality (edible, sensory, and technological) during processing and storage. Conversely, they show negative health implications, so meat technology scientists are focusing on finding alternatives for these compounds. Terpenoid-rich extracts, including essential oils (EOs), are remarkable since they are generally marked as GRAS (generally recognized as safe) and have a wide ranging acceptance from consumers. EOs obtained by conventional or non-conventional methods possess different preservative potentials. Hence, the first goal of this review is to summarize the technical-technology characteristics of different procedures for terpenoid-rich extract recovery and their effects on the environment in order to obtain safe, highly valuable extracts for further application in the meat industry. Isolation and purification of terpenoids, as the main constituents of EOs, are essential due to their wide range of bioactivity and potential for utilization as natural food additives. Therefore, the second goal of this review is to summarize the antioxidant and antimicrobial potential of EOs and terpenoid-rich extracts obtained from different plant materials in meat and various meat products. The results of these investigations suggest that terpenoid-rich extracts, including EOs obtained from several spices and medicinal herbs (black pepper, caraway, Coreopsis tinctoria Nutt., coriander, garlic, oregano, sage, sweet basil, thyme, and winter savory) can be successfully used as natural antioxidants and antimicrobials in order to prolong the shelf-life of meat and processed meat products. These results could be encouraged for higher exploitation of EOs and terpenoid-rich extracts in the meat industry.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danica Savanović
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Zoran Zeković
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Tomović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
22
|
Gladikostić N, Ikonić B, Teslić N, Zeković Z, Božović D, Putnik P, Bursać Kovačević D, Pavlić B. Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:745. [PMID: 36840093 PMCID: PMC9968228 DOI: 10.3390/plants12040745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum majorana, Origanum vulgare, Salvia officinalis, Satureja hortensis, Satureja montana and Thymus vulgaris), Asteraceae (Ehinacea purpurea and Matricaria chamomilla), Apiaceae (Anethum graveolens, Carum carvi, Foeniculum vulgare, Petroselinum crispum and Pimpinella anisum) and Cupressaceae (Juniperus comunis) were selected as raw material for essential oils (EOs)' isolation. Hydrodistillation (HD) was used for the isolation of EOs while they were evaluated in terms of yield and terpenoid profiles by GC-MS. In vitro radical scavenging DPPH and ABTS+ radical activities were carried out for all EOs. Finally, a principal component analysis (PCA) was performed with the experimental results of the composition and antioxidant activity of the EOs, which showed a clear distinction between the selected plant species for the aforementioned responses. This work represents a screening tool for the selection of other EO candidates for further processing by emerging extraction techniques and the use of EOs as natural additives for meat products.
Collapse
Affiliation(s)
- Nevena Gladikostić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Ikonić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Danica Božović
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO 2 Extraction By-Products of Rosemary. Antioxidants (Basel) 2023; 12:antiox12020244. [PMID: 36829802 PMCID: PMC9952831 DOI: 10.3390/antiox12020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.
Collapse
|
24
|
|
25
|
A Comparative Study of Chamomile Essential Oils and Lipophilic Extracts Obtained by Conventional and Greener Extraction Techniques: Chemometric Approach to Chemical Composition and Biological Activity. SEPARATIONS 2022. [DOI: 10.3390/separations10010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bearing in mind the centuries-old traditional use of chamomile, but also the increasing demand for its products in modern industry, oriented toward sustainable development, there are increasing efforts for the efficient extraction of high-value compounds of this plant, as well as obtaining its products with added value. With that goal, conventional and contemporary separation techniques were applied in this work. Both hydrodistillation processes (HD), conducted in a traditional manner and coupled with microwave irradiation (MWHD), were used for essential oil isolation. In parallel with those procedures, chamomile lipophilic extracts were obtained by Soxhlet extraction applying organic solvents and using supercritical fluid extraction as a greener approach. The obtained extracts and essential oils were characterized in terms of chemical composition (GC analysis, contents of total phenolics and flavonoids) and biological potential. GC analysis revealed that oxygenated sesquiterpenes and non-terpene compounds were the dominant compounds. α-Bisabolol oxide A (29.71–34.41%) and α-bisabolol oxide B (21.06–25.83%) were the most abundant individual components in samples obtained by distillation while in supercritical and Soxhlet extracts, major compounds were α-bisabolol oxide A and pentacosane. The biological potential of essential oils and extracts was tested by applying a set of analyzes to estimate the inhibition of biologically important enzymes (amylase, glucosidase, acetylcholinesterase, butyrylcholinesterase, tyrosinase) and antioxidant capacity (DPPH, ABTS, CUPRAC, FRAP, chelating and total antioxidant capacity). The results suggested essential oils as better antioxidants, while the extracts were proven to be better inhibitors of the tested enzymes. Principal Component Analysis was conducted using the experimental results of the composition of extracts and EOs of chamomile obtained by different separation techniques, showing clear discrimination between methods applied in correlation with the chemical profile. Molecular docking was applied for the identification of the main active principles present in the essential oil, among which α-bisabolol-oxide B (cp3) showed a higher affinity for tyrosinase.
Collapse
|
26
|
Iqbal A, Begum N, Rabbi F, Akhtar N, Rahman KU, Khan WM, Shah Z. In-Vitro Antimicrobial, Antioxidant and Enzyme Inhibitory Activities of Fixed Oil Extracted from Stem Bark of Tamarix aphylla. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Terzić M, Majkić T, Zengin G, Beara I, Cespedes-Acuña CL, Čavić D, Radojković M. Could elderberry fruits processed by modern and conventional drying and extraction technology be considered a valuable source of health-promoting compounds? Food Chem 2022; 405:134766. [DOI: 10.1016/j.foodchem.2022.134766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
|
28
|
Zhao H, Ren S, Yang H, Tang S, Guo C, Liu M, Tao Q, Ming T, Xu H. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed Pharmacother 2022; 154:113559. [PMID: 35994817 DOI: 10.1016/j.biopha.2022.113559] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Mentha (also known as peppermint), a genus of plants in the taxonomic family Lamiaceae (mint family), is widely distributed throughout temperate regions of the world. Mentha contains various constituents that are classified as peppermint essential oil (PEO) and non-essential components. PEO, consisting mainly of menthol, menthone, neomenthol and iso-menthone, is a mixture of volatile metabolites with anti-inflammatory, antibacterial, antiviral, scolicidal, immunomodulatory, antitumor, neuroprotective, antifatigue and antioxidant activities. Mounting evidence indicates that PEO may pharmacologically protect gastrointestinal, liver, kidney, skin, respiratory, brain and nervous systems, and exert hypoglycemic and hypolipidemic effects. Clinically, PEO is used for gastrointestinal and dermatological diseases, postoperative adjuvant therapy and other fields. This review aims to address the advances in the extraction and isolation of PEO, its biological activities, pharmacological effects, toxicity and applications, with an emphasis on the efficacy of PEO on burn wounds and psoriasis, providing a comprehensive foundation for research, development and application of PEO in future.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenyang Guo
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
29
|
Mentha piperita as a promising feed additive used to protect liver, bone, and meat of Japanese quail against aflatoxin B 1. Trop Anim Health Prod 2022; 54:254. [PMID: 35947246 DOI: 10.1007/s11250-022-03257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
The present study was conducted to evaluate aflatoxin B1 (AFB1) detoxification effects of some medicinal plants under both in vitro and in vivo. The in vitro experiment was performed with 25 treatments in 5 replications. The samples of medicinal plants were incubated with AFB1 for 72 h, and the toxin residual in the supernatant was determined. The highest aflatoxin elimination was found to be related to peppermint (81%). Thereafter, in vivo experiment was conducted to investigate the effects of peppermint dried leaves, essential oil, and menthol on liver, bone, and meat, as well as the performance of growing Japanese quail fed diet contaminated with AFB1. A total of 640 7-day-old Japanese quails were assigned using a completely randomized design as 2 × 4 factorial arrangement with two levels of AFB1 (including 0 and 2.5 mg/kg diet) and four treatments (including no additive; peppermint powder, 20 g/kg; peppermint essential oil, 800 mg/kg; and menthol powder, 400 mg/kg). Those birds fed AFB1-contaminated diet with no additives showed the worst liver health status by considering super oxide dismutase (P = 0.0399), glutathione peroxidase (P = 0.0139), alanine aminotransferase (P < 0.0001), and aspartate aminotransferase levels (P = 0.0512). However, the supplementation of AFB1 contaminated diet with additives improved their liver health status. Menthol receiving birds showed the highest tibia strength, while the birds fed with AFB1-contaminated diet with no additives had the weakest bone strength (P < 0.0001). A significant increase was also observed in malondialdehyde level of meat by dietary inclusion of AFB1, which was well-repressed by the dietary supplementation of peppermint essential oil and menthol (P = 0.0075). Body weight gain dramatically decreased by adding AFB1 to the diet, which was recovered with the dietary supplementation of additives (P = 0.0585). According to the results of the current study, peppermint and its derivatives can be used to suppress aflatoxin effects on the liver, bone, and meat quality and to improve the performance of Japanese quails.
Collapse
|
30
|
Zhang X, Wang J, Zhu H, Wang J, Zhang H. Chemical Composition, Antibacterial, Antioxidant and Enzyme Inhibitory Activities of the Essential Oil from Leaves of Psidium guajava L. Chem Biodivers 2022; 19:e202100951. [PMID: 35344272 DOI: 10.1002/cbdv.202100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Guava (Psidium guajava L.) leaf essential oil (GLEO) was extracted by water distillation, and its in vitro antioxidant, antidiabetic, and antibacterial properties were evaluated. Using GC/MS to determine the chemical components of GLEO, 27 constituents were identified, accounting for 74.90 % of the total oil content, among which L-caryophyllene (24.46 %), L-calamenene (10.82 %), (-)-globulol (10.69 %), and α-copaene (8.71 %) were the main components. Subsequently, the antioxidant activity of GLEO was determined by DPPH, ABTS, and β-carotene bleaching tests. The half maximal inhibitory concentration of GLEO for three free radicals were IC50 =17.66±0.07 μg/mL, IC50 =19.28±0.03 μg/mL, and IC50 =3.17±0.01 μg/mL, respectively. Moreover, GLEO exhibited remarkable α-amylase (IC50 =13.99±0.34 μg/mL) and α-glucosidase (IC50 =5.50±1.02 μg/mL) inhibitory activities. It was effective against Streptomyces acidiscabies (MIC=1.25 μg/mL), Ralstonia solanacearum (MIC=5 μg/mL), and Erwinia carotovora subsp carotovora borgey (MIC=2.5 μg/mL), showing significant antibacterial properties. Based on the findings, given the high biological activity of GLEO, it is a biological preservative for food, medicine, and cosmetics and is valuable in natural therapy and crop disease management.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Northeast Agricultural University, Harbin, 150030, China.,School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Jiali Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhu
- Northeast Agricultural University, Harbin, 150030, China
| | - Jianhao Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Huajiang Zhang
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
31
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
32
|
Masłowski M, Aleksieiev A, Miedzianowska J, Efenberger-Szmechtyk M, Strzelec K. Antioxidant and Anti–Aging Activity of Freeze–Dried Alcohol–Water Extracts from Common Nettle (Urtica dioica L.) and Peppermint (Mentha piperita L.) in Elastomer Vulcanizates. Polymers (Basel) 2022; 14:polym14071460. [PMID: 35406332 PMCID: PMC9003077 DOI: 10.3390/polym14071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
The research article aimed to examine the antioxidant nature of freeze–dried extracts from Urtica dioica L. and Mentha piperita L. and to present a deep characterization of their influence on the properties of natural rubber–based vulcanizates before and after simulated aging processes. Natural extracts were prepared in three solvent systems at selected volume ratios: water (100), methanol–water (50/50), ethanol–water (50/50), which were further lyophilized and used as additive to natural rubber mixtures. Freeze–dried materials were investigated by UV–VIS diffuse reflectance spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), thermal stability by thermogravimetric analysis (TGA). Antioxidant activity and total phenolic content (TPC) were also examined. Prepared samples were subjected to accelerated simulated degradation processes by using ultraviolet and thermo-oxidative aging. Vulcanizates resistance to degradation effects was determined by the study of cross-linking density (equilibrium swelling method), mechanical properties (tensile strength, elongation at break) and color change in comparison with the results of the reference samples. The research showed that analyzed extracts are characterized by a high content of polyphenols and antioxidant activity, thus have a protective influence on elastomer vulcanizates against damaging effects of aging processes, which consequently extends the lifetime of materials.
Collapse
Affiliation(s)
- Marcin Masłowski
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.A.); (J.M.); (K.S.)
- Correspondence:
| | - Andrii Aleksieiev
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.A.); (J.M.); (K.S.)
| | - Justyna Miedzianowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.A.); (J.M.); (K.S.)
| | - Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology & Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.A.); (J.M.); (K.S.)
| |
Collapse
|
33
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
34
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
35
|
Qin Z, Cheng H, Song Z, Ji L, Chen L, Qi Z. Selection of deep eutectic solvents for extractive deterpenation of lemon essential oil. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Development of Microcapsule Bioactive Paper Loaded with Chinese Fir Essential Oil to Improve the Quality of Strawberries. COATINGS 2022. [DOI: 10.3390/coatings12020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Essential oils are natural antibacterial substances and have potential value for application in fruit and vegetable packaging. In this study, Chinese fir essential oil (CFEO) was microencapsulated to prepare food packaging materials for the first time to overcome its volatilization and oxidation shortcomings and to obtain a sustained-release form of the oil. CFEO was effectively encapsulated in gelatin and chitosan using the complex coacervation method, and the encapsulation efficiency, microstructure, infrared spectrum and thermal stability of the microcapsules were evaluated. Experiments confirmed that the microcapsules had some antibacterial activity. A bioactive paper was developed by combining CFEO microcapsules (CFEO-Ms) with paper-based material using the film-forming property of polyvinyl alcohol (PVA). The coated paper showed good mechanical, air permeability and moisture permeability properties. Environmental scanning electron microscopy confirmed that CFEO-Ms bonded well with PVA and was successfully introduced into the paper fiber after coating, forming an obvious coating film on the surface to facilitate the continuous release of CFEO. The shelf life of strawberries was significantly prolonged when the PVA-coated paper mixed with 3% CFEO-Ms was used for packaging. The results demonstrated that the CFEO-Ms coated paper has the potential to become an effective packaging material for the preservation of strawberries.
Collapse
|
37
|
Derbassi NB, Pedrosa MC, Heleno S, Carocho M, Ferreira IC, Barros L. Plant volatiles: Using Scented molecules as food additives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Effects of Peppermint Extract and Chitosan-Based Edible Coating on Storage Quality of Common Carp ( Cyprinus carpio) Fillets. Polymers (Basel) 2021; 13:polym13193243. [PMID: 34641059 PMCID: PMC8512069 DOI: 10.3390/polym13193243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Edible coatings have recently been developed and applied to different food matrices, due to their numerous benefits, such as increasing the shelf life of foods, improving their appearance, being vehicles of different compounds, such as extracts or oils of various spices that have antioxidant and antimicrobial activity, as well as being friendly to the environment. The objective of this research was to develop a new edible coating based on chitosan enriched with peppermint extract and to evaluate its effectiveness to inhibit microbial development in vitro and improve both the quality and shelf life of common carp (Cyprinus carpio) during refrigerated storage (4 ± 1 °C). Three treatments were used: edible coating (C + EC), edible coating +, 5% chitosan (C + ECCh) and edible coating + 1.5% chitosan + 10% peppermint (C + ECChP). Prior the coating carp fillets; the antibacterial activity and antioxidant capacity were evaluated in the peppermint extract and coating solutions. After coating and during storage, the following were determined on the fillet samples: microbiological properties, observed for ECP, an inhibition halo of 14.3 mm for Staphylococcus aureus, not being the case for Gram-negative species, for ECCh, inhibition halos of 17.6 mm, 17.1 mm and 16.5 mm for S. aureus, Salmonella typhimurium and Escherichia coli, respectively; for the ECChP, inhibition halos for S. aureus, S. typhimurium and E. coli of 20 mm, 17 mm and 16.8 mm, respectively. For the physicochemical characteristics: an increase in solubility was observed for all treatments during storage, reaching 46.7 mg SN protein/mg total protein for the control, and values below 29.1 mg SN protein/mg total protein (p < 0.05), for fillets with EC (C + EC > C + ECCh > C + ECChP, respectively at the end of storage. For the pH, maximum values were obtained for the control of 6.4, while for the fillets with EC a maximum of 5.8. For TVB-N, the fillets with different CE treatments obtained values (p < 0.05) of 33.3; 27.2; 25.3 and 23.3 mg N/100 g (control > C + E C > C + ECCh > C + ECChP respectively). Total phenolic compounds in the aqueous peppermint extract were 505.55 mg GAE/100 g dried leaves, with 98.78% antioxidant capacity in the aqueous extract and 81.88% in the EC. Biomolecule oxidation (hydroperoxide content) had a significant increase (p < 0.05) in all treatments during storage, 1.7 mM CHP/mg protein in the control, to 1.4 in C + EC, 1.27 in C + ECCh and 1.16 in C + ECChP; TBARS assay values increased in the different treatments during refrigerated storage, with final values of 33.44, 31.88, 29.40 and 29.21 mM MDA/mg protein in the control; C + EC; C + ECCh and C + ECChP respectively. In SDS -PAGE a protective effect was observed in the myofibrillar proteins of fillets with ECChP). The results indicate that the C + ECCh and C + ECChP treatments extend the shelf life of 3–5 days with respect to microbiological properties and 4–5 days with respect to physicochemical characteristics. A reduction in lipid and protein oxidation products was also observed during refrigerated storage. With these findings, this is considered a promising method to increase the shelf life of fish fillets combined with refrigeration and we are able to recommend this technology for the fish processing industry.
Collapse
|
39
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
40
|
Zabot GL, Viganó J, Silva EK. Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds. Molecules 2021; 26:5117. [PMID: 34500551 PMCID: PMC8434444 DOI: 10.3390/molecules26175117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.
Collapse
Affiliation(s)
- Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96508-010, Brazil;
| | - Juliane Viganó
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil;
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Eric Keven Silva
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| |
Collapse
|
41
|
Shikov AN, Narkevich IA, Akamova AV, Nemyatykh OD, Flisyuk EV, Luzhanin VG, Povydysh MN, Mikhailova IV, Pozharitskaya ON. Medical Species Used in Russia for the Management of Diabetes and Related Disorders. Front Pharmacol 2021; 12:697411. [PMID: 34354589 PMCID: PMC8330883 DOI: 10.3389/fphar.2021.697411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Polyherbal mixtures called "medical species" are part of traditional and officinal medicine in Russia. This review aimed to analyze medical species used in Russia for the treatment of diabetes and related disorders. The information relevant to medical species, diabetes, and obesity was collected from local libraries, the online service E-library.ru, and Google Scholar. The prediction of the antidiabetic activity for the principal compounds identified in plants was performed using the free web resource PASS Online. Results: We collected and analyzed information about the compositions, specificities of use, and posology of 227 medical species. The medical species represent mixtures of 2-15 plants, while the most frequently mentioned in the literature are species comprising 3-6 plants. The top 10 plants among the 158 mentioned in the literature include Vaccinium myrtillus L., Phaseolus vulgaris L., Taraxacum campylodes G.E. Haglund., Urtica dioica L., Rosa spp., Hypericum spp., Galega officinalis L., Mentha × piperita L., Arctium spp, and Fragaria vesca L. The leading binary combination found in medical species comprises the leaves of V. myrtillus and pericarp of P. vulgaris; leaves of V. myrtillus and leaves of U. dioica; and leaves of V. myrtillus and aerial parts of G. officinalis. In triple combinations, in addition to the above-mentioned components, the roots of T. campylodes are often used. These combinations can be regarded as basic mixtures. Other plants are added to improve the efficacy, treat associated disorders, improve gastrointestinal function, prevent allergic reactions, etc. Meanwhile, an increase in plants in the mixture necessitates advanced techniques for quality control. A feature of medical species in Russia is the addition of fresh juices, birch sap, seaweeds, and adaptogenic plants. Modern studies of the mechanisms of action and predicted activities of the principal compounds from medicinal plants support the rationality of polyherbal mixtures. Nevertheless, the mechanisms are not well studied and reported due to the limited number of compounds. Further investigations with calculations of synergistic or additive indices are important for strengthening the scientific fundamentals for the wider use of medical species in the therapy of diabetes. Two medical species, "Arfazetin" (7 medicinal plants) and "Myrphasinum" (12 medicinal plants), are approved for use in officinal medicine. The efficacy of these species was confirmed in several in vivo experiments and clinical trials. According to modern regulatory rules, additional experiments and clinical trials are required for more detailed investigations of the mechanisms of action and confirmation of efficacy. Conclusion: We believe that the scientifically based utilization of rich plant resources and knowledge of Russian herbal medicine can significantly contribute to the local economy as well as to the sectors seeking natural healing products.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Alexandra V Akamova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Oksana D Nemyatykh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | | | - Mariia N Povydysh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Iuliia V Mikhailova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk, Russia
| |
Collapse
|
42
|
Ren X, Xu Z, Deng R, Huang L, Zheng R, Kong Q. Peppermint Essential Oil Suppresses Geotrichum citri-aurantii Growth by Destructing the Cell Structure, Internal Homeostasis, and Cell Cycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7786-7797. [PMID: 34184888 DOI: 10.1021/acs.jafc.1c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peppermint essential oil (Peo) is an efficient antifungal agent, and 2.0 μL of Peo per milliliter culture medium can completely inhibit the mycelium growth and spore germination of Geotrichum citri-aurantii. In vitro experiments showed that the main functional component in Peo was l-menthol, which could lead to changes in sugar and protein contents, reduce the content of alkaline phosphatase (AKP), and destroy the spore membrane structure, with a significant increase in electrical conductivity. Meanwhile, the content of reactive oxygen (ROS) accumulated sharply, and the enzyme activity changed significantly with the change in the gene expression level. In addition, l-menthol could cause degradation in spore genetic material differently. Furthermore, a total of 1704 differentially expressed genes (DEGs) in G. citri-aurantii after 1.6 μL/mL l-menthol exposure for 2 h were obtained by the transcriptome sequencing. These DEGs were involved in transmembrane transport, carbohydrate transmembrane transport protein activity, and mitogen-activated protein kinase (MAPK) signaling pathway. The protein-protein interaction (PPI) analysis of DEGs yielded 10 highly cross-linked nodes, and these genes were associated with DNA replication and cell cycle. The expression level of the hub gene was confirmed by real-time quantitative PCR (RT-qPCR), with the most significant changes in POL 30 (5.9-fold). Molecular simulation was performed and it was found that the binding site between l-menthol and POL 30 was the 44th ARG residue in POL 30, and it was speculated that l-menthol and POL 30 may be combined by hydrogen bonding interaction. The results of flow cytometry assay showed that l-menthol blocked the replication process in the S-phase of G. citri-aurantii. This study provides new insights into the development and application of Peo in food safety.
Collapse
Affiliation(s)
- Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhe Xu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rongrong Deng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lingxuan Huang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Renyu Zheng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
43
|
Aminizadeh M, Rahimi A, Sohrabi F, Kavoosi G. Development of antioxidant materials based on Persian gum and Zataria essential oil: Modulation of superoxide-producing and nitric oxide-producing enzymes in wheat seedlings. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Vianna TC, Marinho CO, Marangoni Júnior L, Ibrahim SA, Vieira RP. Essential oils as additives in active starch-based food packaging films: A review. Int J Biol Macromol 2021; 182:1803-1819. [PMID: 34058206 DOI: 10.1016/j.ijbiomac.2021.05.170] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
The production of sustainable food packaging from renewable sources represents a prominent alternative to the use of petrochemical-based plastics. For example, starch remains one of the more closely studied replacement options due to its broad availability, low cost and significant advances in improving properties. In this context, essential oils as additives fulfil a key role in the manufacture of renewable active packaging with superior performances. In this review, a comprehensive summary of the impact of adding essential oils to the starch-based films is provided. After a brief introduction to the fundamental concepts related to starch and essential oils, details on the most recent advances in obtaining active starch-based films are presented. Subsequently, the effects of essential oils addition on the structure-property relationships (from physicochemical to antimicrobial ones) are thoroughly addressed. Finally, applications and challenges to the widespread use of essential oils are critically discussed.
Collapse
Affiliation(s)
- Thomás Corrêa Vianna
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Carolina Oliveira Marinho
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Luís Marangoni Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Brazil
| | - Salam Adnan Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
45
|
Ćavar Zeljković S, Šišková J, Komzáková K, De Diego N, Kaffková K, Tarkowski P. Phenolic Compounds and Biological Activity of Selected Mentha Species. PLANTS 2021; 10:plants10030550. [PMID: 33804017 PMCID: PMC8000339 DOI: 10.3390/plants10030550] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Mentha species are widely used as food, medicine, spices, and flavoring agents. Thus, chemical composition is an important parameter for assessing the quality of mints. In general, the contents of menthol, menthone, eucalyptol, and limonene comprise one of the major parameters for assessing the quality of commercially important mints. Building further on the phytochemical characterization of the quality of Mentha species, this work was focused on the composition of phenolic compounds in methanolic extracts. Thirteen Mentha species were grown under the same environmental conditions, and their methanolic extracts were subjected to the LC-MS/MS (liquid chromatography-tandem mass spectrometry) profiling of phenolics and the testing their biological activities, i.e., antioxidant and tyrosinase inhibition activities, which are important features for the cosmetic industry. The total phenolic content (TPC) ranged from 14.81 ± 1.09 mg GAE (gallic acid equivalents)/g for Mentha cervina to 58.93. ± 8.39 mg GAE/g for Mentha suaveolens. The antioxidant activity of examined Mentha related with the content of the phenolic compounds and ranged from 22.79 ± 1.85 to 106.04 ± 3.26 mg TE (Trolox equivalents)/g for M. cervina and Mentha x villosa, respectively. Additionally, Mentha pulegium (123.89 ± 5.64 mg KAE (kojic acid equivalents)/g) and Mentha x piperita (102.82 ± 15.16 mg KAE/g) showed a strong inhibition of the enzyme tyrosinase, which is related to skin hyperpigmentation. The most abundant compound in all samples was rosmarinic acid, ranging from 1363.38 ± 8323 to 2557.08 ± 64.21 μg/g. In general, the levels of phenolic acids in all examined mint extracts did not significantly differ. On the contrary, the levels of flavonoids varied within the species, especially in the case of hesperidin (from 0.73 ± 0.02 to 109. 39 ± 2.01 μg/g), luteolin (from 1.84 ± 0.11 to 31.03 ± 0.16 μg/g), and kaempferol (from 1.30 ± 0.17 to 33.68 ± 0.81 μg/g). Overall results indicated that all examined mints possess significant amounts of phenolic compounds that are responsible for antioxidant activity and, to some extent, for tyrosinase inhibition activity. Phenolics also proved to be adequate compounds, together with terpenoids, for the characterization of Mentha sp. Additionally, citrus-scented Mentha x villosa could be selected as a good candidate for the food and pharmaceutical industry, especially due its chemical composition and easy cultivation, even in winter continental conditions.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
- Correspondence: or
| | - Jana Šišková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Karolína Komzáková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Nuria De Diego
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Katarína Kaffková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| |
Collapse
|
46
|
Liu Q, Gao Y, Fu X, Chen W, Yang J, Chen Z, Wang Z, Zhuansun X, Feng J, Chen Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201:111626. [PMID: 33631642 DOI: 10.1016/j.colsurfb.2021.111626] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Peppermint oil (PO) is one of the most popular and widely used essential oils. However, due to volatile and poor water solubility of volatile oil, its application in the fields of medicine and food is limited. In order to solve this problem, the high speed shearing technology was used to prepare the nanoemulsion from PO. By using a series of characterization methods, such as turbiscan scanning spectrum, dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), the best nanoemulsion formula was identified as PO 10 %, surfactant 8 % (Tween-60: EL-20 = 3:1) and deionized water 82 % (w/w). The inhibition strength of nanoemulsion on bacteria was evaluated by detecting the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) treated with peppermint oil nanoemulsion (PON) and observing the morphology of bacteria with biological scanning electron microscope (SEM). The results showed that PON had strong inhibitory effect on E. coli. At the concentration range of 0.02 μg/μL-0.2 μg/μL, the apoptosis rate of BEAS-2B cells was less than 10 % compared with control cells. All in all, the PON prepared under this formula is stable, which provides a reference for further exploration of essential oil as natural antibacterial materials in the future.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Functional Examination Department of Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
47
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
48
|
Essential oil and supercritical extracts of winter savory (Satureja montana L.) as antioxidants in precooked pork chops during chilled storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|