1
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Hu Y, Zhang Y, Cui X, Wang D, Hu Y, Wang C. Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 268:131701. [PMID: 38643920 DOI: 10.1016/j.ijbiomac.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoao Cui
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yong Hu
- Agricultural Products Processing Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Cao Y, Kou R, Huang X, Wang N, Di D, Wang H, Liu J. Separation of polysaccharides from Lycium barbarum L. by high-speed countercurrent chromatography with aqueous two-phase system. Int J Biol Macromol 2024; 256:128282. [PMID: 38008142 DOI: 10.1016/j.ijbiomac.2023.128282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The traditional method for isolation and purification of polysaccharides is time-consuming. It often involves toxic solvents that destroy the function and structure of the polysaccharides, thus limiting in-depth research on the essential active ingredient of Lycium barbarum L. Therefore, in this study, high-speed countercurrent chromatography (HSCCC) and aqueous two-phase system (ATPS) were combined for the separation of crude polysaccharides of Lycium barbarum L. (LBPs). Under the optimized HSCCC conditions of PEG1000-K2HPO4-KH2PO4-H2O (12:10:10:68, w/w), 1.0 g of LBPs-ILs was successfully divided into three fractions (126.0 mg of LBPs-ILs-1, 109.9 mg of LBPs-ILs-2, and 65.4 mg of LBPs-ILs-3). Moreover, ATPS was confirmed as an efficient alternative method of pigment removal for LBPs purification, with significantly better decolorization (97.1 %) than the traditional H2O2 method (88.5 %). Then, the different partitioning behavior of LBPs-ILs in the two-phase system of HSCCC was preliminarily explored, which may be related to the difference in monosaccharide composition of polysaccharides. LBPs-ILs-1 exhibited better hypoglycemic activities than LBPs-ILs-2 and LBPs-ILs-3 in vitro. Therefore, HSCCC, combined with aqueous two-phase system, was an efficient separation and purification method with great potential for separating and purifying active polysaccharides in biological samples.
Collapse
Affiliation(s)
- Yu Cao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Renbo Kou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Xinyi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ningli Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Han Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
4
|
Hydrogel loading 2D montmorillonite exfoliated by anti-inflammatory Lycium barbarum L. polysaccharides for advanced wound dressing. Int J Biol Macromol 2022; 209:50-58. [PMID: 35331795 DOI: 10.1016/j.ijbiomac.2022.03.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
Designing wound dressing materials with hemocompatibility, suitable mechanical properties, outstanding hemostatic effects and anti-inflammatory activity is of great practical significance for wound management. Herein, a hemostatic hydrogel loaded with Lycium barbarum L. polysaccharide (LBP)-functionalized ultrathin MMT nanosheets (L-MMT NSs) was fabricated for efficient hemostasis and wound healing. Loading the L-MMT NSs into polyvinyl alcohol (PVA), the obtained P-L-MMT hydrogel exhibited a 3D porous structure with good swelling properties, cytocompatibility, hemocompatibility, and anti-inflammatory activity. Importantly, in vivo investigations demonstrated that the P-L-MMT hydrogel exerts outstanding hemostasis activity in the hemorrhaging mouse liver model and reduces tissue damage caused by inflammation to shorten wound healing time. Altogether, the convenient exfoliation and functionalization of bulk MMT using LBPs make this inexpensive and rising nanostructure more attractive in the application of nanomedicine. Moreover, due to the synergy between hemostasis and anti-inflammation, this newly developed multifunctional P-L-MMT hydrogel represents a promising material in biomedical fields.
Collapse
|
5
|
Shi S, Feng J, Liang Y, Sun H, Yang X, Su Z, Luo L, Wang J, Zhang W. Lycium Barbarum Polysaccharide-Iron (III) Chelate as Peroxidase Mimics for Total Antioxidant Capacity Assay of Fruit and Vegetable Food. Foods 2021; 10:foods10112800. [PMID: 34829081 PMCID: PMC8623380 DOI: 10.3390/foods10112800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Quantitative evaluation of the antioxidant capacity of foods is of great significance for estimating food’s nutritional value and preventing oxidative changes in food. Herein, we demonstrated an easy and selective colorimetric method for the total antioxidant capacity (TAC) assay based on 3,3’,5,5’-tetramethyl-benzidine (TMB), hydrogen peroxide (H2O2) and synthetic Lycium barbarum polysaccharide-iron (III) chelate (LBPIC) with high peroxidase (POD)-like activity. The results of steady-state kinetics study showed that the Km values of LBPIC toward H2O2 and TMB were 5.54 mM and 0.16 mM, respectively. The detection parameters were optimized, and the linear interval and limit of detection (LOD) were determined to be 2–100 μM and 1.51 μM, respectively. Additionally, a subsequent study of the determination of TAC in six commercial fruit and vegetable beverages using the established method was successfully carried out. The results implied an expanded application of polysaccharide-iron (III) chelates with enzymatic activity in food antioxidant analysis and other biosensing fields.
Collapse
|
6
|
Gentiana straminea Maxim. polysaccharide decolored via high-throughput graphene-based column and its anti-inflammatory activity. Int J Biol Macromol 2021; 193:1727-1733. [PMID: 34774595 DOI: 10.1016/j.ijbiomac.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Gentiana straminea Maxim. exhibits various biological activities. However, the purification and functions of polysaccharides in Gentiana straminea Maxim. have never been reported. Herein, by proposing a flexible 3D graphene-based decoloration column (3DD column), Gentiana straminea Maxim. polysaccharide (GMP) was high-throughput obtained and its anti-inflammatory activity was investigated. Benefiting from the large macroporous network of 3D NH2-graphene oxide hydrogel with selective adsorption towards pigments, the 3DD column exhibits high decoloration ratio (96.41%). In addition, the 3DD column provides superior practical functionality as compared to the traditional approaches, which are time-consuming and need toxic solvents, and exhibiting widespread-application for the purification of polysaccharide from other common plant species. More importantly, the decolored GMP as a natural product has promising anti-inflammatory activity on RAW264.7 cells without negative impact on cell viability. Overall, this work reveals a new functional polysaccharides and provides a flexible approach for polysaccharide decoloration, exhibiting a promising prospect for natural polysaccharides in practical application of pharmaceutical.
Collapse
|
7
|
Li J, Huang G. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Duan WD, Quan KJ, Huang XY, Gong Y, Xiao S, Liu JF, Pei D, Di DL. Recovery and recycling of solvent of counter-current chromatography: The sample of isolation of zeaxanthin in the Lycium barbarum L. fruits. J Sep Sci 2020; 44:759-766. [PMID: 33253473 DOI: 10.1002/jssc.202000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022]
Abstract
An efficient method of recovering and recycling solvent for counter-current chromatography was established by which zeaxanthin was separated from Lycium barbarum L. fruits. A column with activated carbon combined with high performance counter-current chromatography formed the recovering and recycling solvent system. Using the solvent system of n-hexane-ethyl acetate-ethanol-water (8:2:7:3, v/v) from the references, five injections were performed with an almost unchanged purity of zeaxanthin (80.9, 81.2, 81.5, 81.3, and 80.2% respectively) in counter-current chromatography separation. Meanwhile, the mobile phase reduced by half than conventional counter-current chromatography. By this present method, an effective improvement of counter-current chromatography solvent utilization was achieved.
Collapse
Affiliation(s)
- Wen-Da Duan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, P. R. China
| | - Kai-Jun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sun Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|