1
|
Wu H, Pan Q, Grill J, Johansson MJ, Qiu Y, Bäckvall JE. Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling. J Am Chem Soc 2025; 147:4338-4348. [PMID: 39847037 PMCID: PMC11803718 DOI: 10.1021/jacs.4c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner. Specifically, the selective allenic C-H activation of an allene with an allyl substituent as the assisting group gives rise to a vinylpalladium intermediate, which reacts with a less substituted allene in a carbopalladation, followed by a β-hydride elimination. The reaction sequence leads to a new C(sp2)-C(sp2) bond between two diene units. Remarkably, this protocol provides an unconventional strategy for the site-selective and stereoselective construction of C(vinyl)-C(vinyl) bonds without using any halogenated and organometallics olefin precursors. Furthermore, the practical transformations of the synthesized [4]dendralenes and late-stage modifications of biorelevant molecules demonstrate their potential in the total synthesis of natural products and drug discovery.
Collapse
Affiliation(s)
- Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qi Pan
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Judith Grill
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Magnus J. Johansson
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183 Mölndal, Sweden
| | - Youai Qiu
- State
Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center
for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
2
|
Marcoccia D, Tzanetou EN, Pietropaoli M, Roessink I, van der Steen J, Cuva C, Formato G, Kasiotis KM. Biomonitoring of particulate matter and volatile organic compounds using honey bees and their products. A contemporary overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177391. [PMID: 39505038 DOI: 10.1016/j.scitotenv.2024.177391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Airborne pollutants like particulate matter and volatile organic compounds can negatively impact microbial, plant, and animal life as well as human health. Traditional environmental monitoring, while crucial, often relies on expensive equipment at limited locations, leading to gaps in geographical coverage. To obtain a low-cost, easily deployed environmental monitoring grid, the use of European honey bees (Apis mellifera) as biomonitor can offer a promising alternative. Their extensive foraging in the landscape exposes them to environmental contaminants like particulate matter and organic compounds. Once collected, these pollutants are carried back into the hives, where they can subsequently be sampled and quantified using various techniques. This potentially makes honey bee colonies a cost-effective and valuable long-term monitoring tool for particulate matter and organic compounds. This review, through the critical insight of the most recent pertinent literature, explores the suitability of honey bees and their products as biomarkers for environmental monitoring of these pollutants, addressing sample preparation approaches and chemical analytical methods. Overall, the presented information will aid researchers in initiating further investigations in this pivotal field, incorporating additional chemicals and innovative, non-invasive sampling matrices compatible with the beehive environment.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Evangelia N Tzanetou
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, the Netherlands
| | | | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Konstantinos M Kasiotis
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| |
Collapse
|
3
|
Fratianni F, Amato G, Ombra MN, De Feo V, Nazzaro F, De Giulio B. Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants (Basel) 2024; 13:482. [PMID: 38671929 PMCID: PMC11047671 DOI: 10.3390/antiox13040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Honey can beneficially act against different human diseases, helping our body to improve its health. The aim of the present study was first to increase knowledge of some biochemical characteristics (amount and composition of polyphenols and volatile organic compounds, vitamin C content) of five Italian legume honeys (alfalfa, astragalus, carob, indigo, and sainfoin). Furthermore, we evaluated their potential health properties by studying their antioxidant and in vitro anti-inflammatory activities and in vitro inhibitory effects on three enzymes involved in neurodegenerative diseases (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Alfalfa honey showed the highest total polyphenol content (TPC) (408 μg g-1 of product). Indigo honey showed the lowest TPC (110 μg g-1 of product). The antioxidant activity was noteworthy, especially in the case of sainfoin honey (IC50 = 6.08 mg), which also exhibited excellent inhibitory action against butyrylcholinesterase (74%). Finally, the correlation between the biochemical and functional results allowed us to identify classes of molecules, or even single molecules, present in these five honeys, which are capable of influencing the properties indicated above.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Vincenzo De Feo
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Beatrice De Giulio
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| |
Collapse
|
4
|
Li H, Liu Z, Shuai M, Song M, Qiao D, Peng W, Chen L. Characterization of Evodia rutaecarpa (Juss) Benth honey: volatile profile, odor-active compounds and odor properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2038-2048. [PMID: 37909381 DOI: 10.1002/jsfa.13088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Aroma is one of the most important quality criterion of different honeys and even defines their merchant value. The composition of volatile compounds, especially the characteristic odor-active compounds, contributes significantly to the aroma of honey. Evodia rutaecarpa (Juss) Benth honey (ERBH) is a special honey in China with unique flavor characteristics. However, no work in the literature has investigated the volatile compounds and characteristic odor-active compounds of ERBHs. Therefore, it is imperative to conduct systematic investigation into the volatile profile, odor-active compounds and odor properties of ERBHs. RESULTS The characteristic fingerprint of ERBHs was successfully constructed with 12 characteristic peaks and a similarity range of 0.785-0.975. In total, 297 volatile compounds were identified and relatively quantified by headspace solid-phase microextraction coupled with gas chromatography quadrupole time-of-flight mass spectrometry, of which 61 and 31 were identified as odor-active compounds by relative odor activity values and GC-olfactometry analysis, respectively, especially the common 22 odor-active compounds (E)-β-damascenone, phenethyl acetate, linalool, cis-linalool oxide (furanoid), octanal, hotrienol, trans-linalool oxide (furanoid), 4-oxoisophorone and eugenol, etc., contributed significantly to the aroma of ERBHs. The primary odor properties of ERBHs were floral, followed by fruity, herbaceous and woody aromas. The partial least-squares regression results showed that the odor-active compounds had good correlations with the odor properties. CONCLUSION Identifying the aroma differences of different honeys is of great importance. The present study provides a reliable theoretical basis for the quality and authenticity of ERBHs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhaolong Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengying Shuai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mei Song
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dong Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
- Fujian Agriculture and Forestry University, Fuzhou City, China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanzhen Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Liang D, Wen H, Zhou Y, Wang T, Jia G, Cui Z, Li A. Simultaneous qualitative and quantitative analyses of volatile components in Chinese honey of six botanical origins using headspace solid-phase microextraction and gas chromatography-mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7631-7642. [PMID: 37433752 DOI: 10.1002/jsfa.12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Honey aroma is one of its most important properties and it depends on the qualitative and quantitative composition of the volatile compounds. The volatile profile of honey could reveal its botanical origin to avoid a false characterization. Thus, it is of great significance to honey authentication. This study developed and validated a headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) method for simultaneous qualitative and quantitative analyses of 34 volatile components in honey. The developed method was applied to 86 honey samples from six different botanical origins, including linden honey, rape honey, jujube honey, vitex honey, lavender honey and acacia honey. RESULTS The volatile fingerprints and quantitative results were simultaneously obtained by using the full scan and selected ion monitoring (SCAN+SIM) MS scanning mode. The limits of quantification (LOQs) and limits of detection (LODs) of 34 volatile compounds were in the ranges of 1-10 ng/g and 0.3-3 ng/g, respectively. And the spiked recoveries ranged between 70.6% and 126.2%, with the relative standard deviations (RSDs) not higher than 45.4%. A total of 98 volatile compounds were found with relative contents determined, and the 34 volatile compounds were determined with absolute concentrations. Based on the volatile fingerprints and the contents of volatile compounds, honey samples from six botanical origins were well classified by principal component analysis and orthogonal partial least-squares discrimination analysis. CONCLUSIONS The HS-SPME-GC-MS method was successfully applied to achieve the volatile fingerprints of six types of honey and to quantitatively analyze 34 volatile compounds with satisfying sensitivity and accuracy. Chemometrics analysis showed significant correlations between honey types and volatiles. These results reveal the characteristics of volatile compounds in six types of unifloral honey and provide some supports for honey authentication. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongshuang Liang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Haosong Wen
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Yaxuan Zhou
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Taohong Wang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Guangqun Jia
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Zongyan Cui
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
- Technology Center of Qinhuangdao Customs, Qinhuangdao, China
| | - Adan Li
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
6
|
Gialouris PLP, Koulis GA, Nastou ES, Dasenaki ME, Maragou NC, Thomaidis NS. Development and validation of a high-throughput headspace solid-phase microextraction gas chromatography-mass spectrometry methodology for target and suspect determination of honey volatiles. Heliyon 2023; 9:e21311. [PMID: 37954321 PMCID: PMC10632477 DOI: 10.1016/j.heliyon.2023.e21311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73-114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 μg kg-1 (Limonene) up to 20 mg kg-1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content.
Collapse
Affiliation(s)
- Panagiotis-Loukas P. Gialouris
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Georgios A. Koulis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Eleni S. Nastou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Marilena E. Dasenaki
- Laboratory of Food Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Niki C. Maragou
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| |
Collapse
|
7
|
Yan S, Liu Y, Zhao W, Zhao H, Xue X. Chemical markers of a rare honey from the traditional spice plant Amomum tsao-ko Crevost et Lemarié, via integrated GC-MS and LC-MS approaches. Food Res Int 2023; 172:113234. [PMID: 37689964 DOI: 10.1016/j.foodres.2023.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
The precious medicinal plant, Amomum tsao-ko Crevost et Lemarié, is the nectariferous plant from which the rare Amomum tsao-ko Crevost et Lemarié honey (ATH) is produced. Presently, chemical markers for authentication of this honey are not available due to the lack of data on its chemical composition. Here, we analyzed the volatile components and their odor activity values (OAVs), which revealed that the unique aroma was mildly flowery and fruity, accompanied by subtle sweet and fresh undertones. Since non-volatile chemicals are more reliable markers for routine authentication, we used a metabolomic approach combined with NMR-based identification to find and confirm a suitable compound to unambiguously distinguish ATH from other honeys. Isorhamnetin 3-O-neohesperidoside ranged from 3.62 to 9.38 mg/kg in ATH and was absent in the other tested honeys. In sum, the study uncovered unique chemical characteristics of ATH that will be helpful to control its quality.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yibing Liu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wen Zhao
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongmu Zhao
- Sericultural and Apicultural Research Institute Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan 661101, China.
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Żak N, Wilczyńska A. The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey. Foods 2023; 12:3210. [PMID: 37685142 PMCID: PMC10486586 DOI: 10.3390/foods12173210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to review methods of honey testing in the assessment of its quality and authenticity. The quality of honey, like other food products, is multidimensional. This quality can be assessed not only on the basis of the characteristics evaluated by the consumer during purchase and consumption, but also on the basis of various physicochemical parameters. A number of research methods are used to verify the quality of honeys and to confirm their authenticity. Obligatory methods of assessing the quality of honey are usually described in legal acts. On the other hand, other, non-normative methods of honey quality assessment are used worldwide; they can be used to determine not only the elementary chemical composition of individual types of honey, but also the biological activity of honey and its components. However, so far, there has been no systematization of these methods together with a discussion of problems encountered when determining the authenticity of honeys. Therefore, the aim of our study was to collect information on the methods of assessing the quality and authenticity of honeys, and to identify the problems that occur during this assessment. As a result, a tabular summary of various research methods was created.
Collapse
Affiliation(s)
- Natalia Żak
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland;
| | | |
Collapse
|
9
|
Jiang W, Paolini J, Bereau D, Battesti MJ, Yang Y, Jean-Marie É, Costa J, Robinson JC. French Guiana honeys from the Amazon biome: First description of volatile fraction and antioxidant capacity. Heliyon 2023; 9:e18526. [PMID: 37554807 PMCID: PMC10404971 DOI: 10.1016/j.heliyon.2023.e18526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Various honeys from French Guiana were collected and analyzed to investigate their volatile fraction composition and antioxidant activity. Volatile composition was assessed using HS-SPME/GC, GC-MS technique. Oxygenated monoterpenes like hotrienol (0.5-45.3%) were found as major molecules, followed by non terpenic compounds like phenylacetaldehyde (0.8-18.2%) or 3-hydroxy-4-phenyl-2-butanone (0.1-29.3%). Three chemical groups using statistical analysis were classified within investigated honey samples: norisoprenoids/shikimates, mevalonate and their combination. Total phenolics content (TPC) was determined by Folin-Ciocalteu method. Antioxidant activity was assessed by oxygen radical absorbance capacity (ORAC) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. TPC and anti-radical activity were compared with multifloral honeys from neighboring regions, indicating the possible presence of compounds from the polyphenol family. These results are promising for further biological studies involving honeys from French Guiana.
Collapse
Affiliation(s)
- Weiwen Jiang
- Laboratoire COVAPAM, UMR QualiSud, Département Science et Technologies, Université de Guyane, 97300 French Guiana, France
| | - Julien Paolini
- UMR 6134 CNRS Science pour l'environnement, Science and Techniques Faculty, University of Corsica, 22 Jean Nicoli Av. 20250 Corte, Corsica, France
| | - Didier Bereau
- Laboratoire COVAPAM, UMR QualiSud, Département Science et Technologies, Université de Guyane, 97300 French Guiana, France
| | - Marie-José Battesti
- UMR 6134 CNRS Science pour l'environnement, Science and Techniques Faculty, University of Corsica, 22 Jean Nicoli Av. 20250 Corte, Corsica, France
| | - Yin Yang
- UMR 6134 CNRS Science pour l'environnement, Science and Techniques Faculty, University of Corsica, 22 Jean Nicoli Av. 20250 Corte, Corsica, France
| | - Élodie Jean-Marie
- Laboratoire COVAPAM, UMR QualiSud, Département Science et Technologies, Université de Guyane, 97300 French Guiana, France
| | - Jean Costa
- UMR 6134 CNRS Science pour l'environnement, Science and Techniques Faculty, University of Corsica, 22 Jean Nicoli Av. 20250 Corte, Corsica, France
| | - Jean-Charles Robinson
- Laboratoire COVAPAM, UMR QualiSud, Département Science et Technologies, Université de Guyane, 97300 French Guiana, France
| |
Collapse
|
10
|
Wang Y, Huang Y, Cheng N, Zhao H, Zhang Y, Liu C, He L, Ma T, Li Y, Cao W. Identification of Volatile Markers during Early Zygosaccharomyces rouxii Contamination in Mature and Immature Jujube Honey. Foods 2023; 12:2730. [PMID: 37509822 PMCID: PMC10379421 DOI: 10.3390/foods12142730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osmotolerant yeasts are considered one of the major contaminants responsible for spoilage in honey. To address the signature volatile components of jujube honey contaminated by Zygosaccharomyces rouxii, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and chemometrics analyses were used to analyze the variation of volatile substances during early contamination of mature and immature jujube honey. Undecanal, methyl butyrate, methyl 2-nonenoate, methyl hexanoate, and 2-methyl-3-pentanone were identified as signature volatiles of jujube honey contaminated with Z. rouxii. In addition, methyl heptanoate, 2,6,10-trimethyltetradecane, and heptanal were identified as potential volatile signatures for immature jujube honey. The R2 and Q2 of OPLS-DA analyses ranged from 0.736 to 0.955, and 0.991 to 0.997, which indicates that the constructed model was stable and predictive. This study has demonstrated that HS-SPME-GC-MS could be used to distinguish Z. rouxii-contaminated jujube honey from uncontaminated honey based on variation in VOCs, and could provide theoretical support for the use of HS-SPME-GC-MS for the rapid detection of honey decomposition caused by Z. rouxii, which could improve nutritional quality and reduce economic losses.
Collapse
Affiliation(s)
- Yin Wang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuanyuan Huang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ni Cheng
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ying Zhang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Cailing Liu
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Liangliang He
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianchen Ma
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yankang Li
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
11
|
Wang X, Yan S, Zhao W, Wu L, Tian W, Xue X. Comprehensive study of volatile compounds of rare Leucosceptrum canum Smith honey: Aroma profiling and characteristic compound screening via GC-MS and GC-MS/MS. Food Res Int 2023; 169:112799. [PMID: 37254383 DOI: 10.1016/j.foodres.2023.112799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Monofloral honeys are highly valued for their unique flavors and potential health benefits. In this study, the aromatic attributes of rare Leucosceptrum canum Smith honey (LCH) were characterized by GC-MS coupled with GC-MS/MS. Based on their odor contribution rates (OCRs), linalool (74.22%), 3-methyl-1-butanol (18.19%), benzeneacetaldehyde (1.31%) and lilac aldehyde B (2.78%) were largely responsible for the unique and complex flavor of LCH - flowery, spicy, sweet, fruity and fresh. Compared to other tested honeys, linalool (0.18 mg/kg), which has known antibacterial properties, was higher in LCH. However, it was not the main antibacterial compound in LCH, suggesting as of now unknown antibacterial compounds. This study provides the first aromatic profile of LCH, which will be useful for the authentication of LCH and for uncovering the mechanisms behind its perceived health benefits.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sha Yan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Wen Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
12
|
Tarapoulouzi M, Mironescu M, Drouza C, Mironescu ID, Agriopoulou S. Insight into the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023; 12:473. [PMID: 36766000 PMCID: PMC9914568 DOI: 10.3390/foods12030473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Chryssoula Drouza
- Department of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol 3036, Cyprus
| | - Ion Dan Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
13
|
Evaluation of Antioxidant and Anticancer Activity of Mono- and Polyfloral Moroccan Bee Pollen by Characterizing Phenolic and Volatile Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020835. [PMID: 36677892 PMCID: PMC9866838 DOI: 10.3390/molecules28020835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Bee pollen is frequently characterized as a natural source of bioactive components, such as phenolic compounds, which are responsible for its pharmaceutical potential and nutritional properties. In this study, we evaluated the bioactive compound contents of mono- and polyfloral bee pollen samples using spectroscopic and chromatographic methods and established links with their antioxidant and antitumor activity. The findings demonstrated that the botanical origin of bee pollen has a remarkable impact on its phenolic (3-17 mg GAE/g) and flavonoid (0.5-3.2 mg QE/g) contents. Liquid chromatography-mass spectrometry analysis revealed the presence of 35 phenolic and 13 phenylamide compounds in bee pollen, while gas chromatography-mass spectrometry showed its richness in volatiles, such as hydrocarbons, fatty acids, alcohols, ketones, etc. The concentration of bioactive compounds in each sample resulted in a substantial distinction in their antioxidant activity, DPPH (EC50: 0.3-0.7 mg/mL), ABTS (0.8-1.3 mM Trolox/mg), and reducing power (0.03-0.05 mg GAE/g), with the most bioactive pollens being the monofloral samples from Olea europaea and Ononis spinosa. Complementarily, some samples revealed a moderate effect on cervical carcinoma (GI50: 495 μg/mL) and breast adenocarcinoma (GI50: 734 μg/mL) cell lines. This may be associated with compounds such as quercetin-O-diglucoside and kaempferol-3-O-rhamnoside, which are present in pollens from Olea europaea and Coriandrum, respectively. Overall, the results highlighted the potentiality of bee pollen to serve health-promoting formulations in the future.
Collapse
|
14
|
Volatile fingerprinting by solid-phase microextraction mass spectrometry for rapid classification of honey botanical source. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Tedesco R, Scalabrin E, Malagnini V, Strojnik L, Ogrinc N, Capodaglio G. Characterization of Botanical Origin of Italian Honey by Carbohydrate Composition and Volatile Organic Compounds (VOCs). Foods 2022; 11:2441. [PMID: 36010441 PMCID: PMC9407073 DOI: 10.3390/foods11162441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is a natural sweetener constituted by numerous macro- and micronutrients. Carbohydrates are the most representative, with glucose and fructose being the most abundant. Minor honey components like volatile organic compounds (VOCs), minerals, vitamins, amino acids are able to confer honey-specific properties and are useful to characterize and differentiate between honey varieties according to the botanical origin. The present work describes the chemical characterization of honeys of different botanical origin (multifloral, acacia, apple-dandelion, rhododendron, honeydew, and chestnut) produced and collected by beekeepers in the Trentino Alto-Adige region (Italy). Melissopalynological analysis was conducted to verify the botanical origin of samples and determine the frequency of different pollen families. The carbohydrate composition (fourteen sugars) and the profile of VOCs were evaluated permitting to investigate the relationship between pollen composition and the chemical profile of honey. Statistical analysis, particularly partial least squares discriminant analysis (PLS-DA), demonstrates the importance of classifying honey botanical origin on the basis of effective pollen composition, which directly influences honey's biochemistry, in order to correctly define properties and value of honeys.
Collapse
Affiliation(s)
- Raffaello Tedesco
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Via Torino 155, 30172 Venice Mestre, Italy
- Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via E.Mach 1, San Michele all’Adige, 38010 Trento, Italy
| | - Elisa Scalabrin
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Via Torino 155, 30172 Venice Mestre, Italy
- National Research Council, Polar Science Institute, Via Torino 155, 30172 Venice Mestre, Italy
| | - Valeria Malagnini
- Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via E.Mach 1, San Michele all’Adige, 38010 Trento, Italy
| | - Lidija Strojnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gabriele Capodaglio
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Via Torino 155, 30172 Venice Mestre, Italy
| |
Collapse
|
16
|
Kasiotis KM, Baira E, Iosifidou S, Bergele K, Manea-Karga E, Theologidis I, Barmpouni T, Tsipi D, Machera K. Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Front Chem 2022; 10:924881. [PMID: 35936100 PMCID: PMC9353074 DOI: 10.3389/fchem.2022.924881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Honey represents a valuable food commodity, known since ancient times for its delicate taste and health benefits due to its specific compositional characteristics, mainly the phenolic compound content. "Anama" honey is a monofloral honey produced from the nectar of Erica manipuliflora plant, a heather bush of the Greek island of Ikaria, one of the Mediterranean's longevity regions. "Anama" is characterized by a unique aroma and taste, with a growing demand for consumption and the potential to be included in the list of products with a protected designation of origin. The aim of this study was to determine the chemical and botanical profile of authentic Anama honey samples and find similarities and differences with honey samples of a different botanical origin from the same geographical area. Untargeted Ultrahigh-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometry (UHPLC-HRMS) metabolomics study was conducted on authentic heather, pine, and thyme honey samples from Ikaria and neighboring islands. The Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA), and differential analysis were performed using the entire metabolic profile of the samples and allowed the identification of chemical markers for sample discrimination. Thirty-two characteristic secondary metabolites (cinnamic acids, phenolic acids, flavonoids, terpenes) and other bioactive phenolic compounds, some of them not previously reported in a heather honey (aucubin, catalpol, domesticoside, leonuriside A, picein among others), emerged as potential chemical indicators of Anama honey. Melissopalynological analysis was also carried out to decipher the botanical and geographical origin of Anama honey. The relative frequency of the pollen of dominant plants of the Ericaceae family and a multitude of nectariferous and nectarless plants contributing to the botanical profile of Anama was evaluated. The identification of the pollen sources enabled a potential correlation of differentially increased secondary metabolites and chemicals with their botanical origin. The physicochemical profile of Anama was also determined, including the parameters of pH, color, electrical conductivity, diastase, moisture, as well as sugars, supporting the high quality of this heather honey.
Collapse
Affiliation(s)
| | - Eirini Baira
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Styliani Iosifidou
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Bergele
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Electra Manea-Karga
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Ioannis Theologidis
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Theodora Barmpouni
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Despina Tsipi
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| |
Collapse
|
17
|
Yildiz O, Gurkan H, Sahingil D, Degirmenci A, Er Kemal M, Kolayli S, Hayaloglu AA. Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04037-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Zhang Z, Yu J, Cheng P, Wang S, Hang F, Li K, Xie C, Shi C. Effect of Different Process Parameters and Ultrasonic Treatment During Solid Osmotic Dehydration of Jasmine for Extraction of Flavoured Syrup on the Mass Transfer Kinetics and Quality Attributes. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Retama sphaerocarpa, Atractylis serratuloides and Eruca sativa honeys from Algeria: Pollen dominance and volatile profiling (HS-SPME/GC–MS). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Unifloral Autumn Heather Honey from Indigenous Greek Erica manipuliflora Salisb.: SPME/GC-MS Characterization of the Volatile Fraction and Optimization of the Isolation Parameters. Foods 2021; 10:foods10102487. [PMID: 34681536 PMCID: PMC8535634 DOI: 10.3390/foods10102487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
For long heather honey has been a special variety due to its unique organoleptic characteristics. This study aimed to characterize and optimize the isolation of the dominant volatile fraction of Greek autumn heather honey using solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The described approach pointed out 13 main volatile components more closely related to honey botanical origin, in terms of occurrence and relative abundance. These volatiles include phenolic compounds and norisoprenoids, with benzaldehyde, safranal and p-anisaldehyde present in higher amounts, while ethyl 4-methoxybenzoate is reported for the first time in honey. Then, an experimental design was developed based on five numeric factors and one categorical factor and evaluated the optimum conditions (temperature: 60 °C, equilibration time: 30 min extraction time: 15 min magnetic stirrer velocity: 100 rpm sample volume: 6 mL water: honey ratio: 1:3 (v/w)). Additionally, a validation test set reinforces the above methodology investigation. Honey is very complex and variable with respect to its volatile components given the high diversity of the floral source. As a result, customizing the isolation parameters for each honey is a good approach for streamlining the isolation volatile compounds. This study could provide a good basis for future recognition of monofloral autumn heather honey.
Collapse
|
21
|
Machado AM, Antunes M, Miguel MG, Vilas-Boas M, Figueiredo AC. Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules 2021; 26:4970. [PMID: 34443558 PMCID: PMC8400914 DOI: 10.3390/molecules26164970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The volatile profiles of 51 samples from 12 monofloral-labelled Portuguese honey types were assessed. Honeys of bell heather, carob tree, chestnut, eucalyptus, incense, lavender, orange, rape, raspberry, rosemary, sunflower and strawberry tree were collected from several regions from mainland Portugal and from the Azores Islands. When available, the corresponding flower volatiles were comparatively evaluated. Honey volatiles were isolated using two different extraction methods, solid-phase microextraction (SPME) and hydrodistillation (HD), with HD proving to be more effective in the number of volatiles extracted. Agglomerative cluster analysis of honey HD volatiles evidenced two main clusters, one of which had nine sub-clusters. Components grouped by biosynthetic pathway defined alkanes and fatty acids as dominant, namely n-nonadecane, n-heneicosane, n-tricosane and n-pentacosane and palmitic, linoleic and oleic acids. Oxygen-containing monoterpenes, such as cis- and trans-linalool oxide (furanoid), hotrienol and the apocarotenoid α-isophorone, were also present in lower amounts. Aromatic amino acid derivatives were also identified, namely benzene acetaldehyde and 3,4,5-trimethylphenol. Fully grown classification tree analysis allowed the identification of the most relevant volatiles for discriminating the different honey types. Twelve volatile compounds were enough to fully discriminate eleven honey types (92%) according to the botanical origin.
Collapse
Affiliation(s)
- Alexandra M. Machado
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Centro de Biotecnologia Vegetal (CBV), Faculdade de Ciências da Universidade de Lisboa, DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Marília Antunes
- Centro de Estatística e Aplicações (CEAUL), Departamento de Estatística e Investigação Operacional, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Miguel Vilas-Boas
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Centro de Biotecnologia Vegetal (CBV), Faculdade de Ciências da Universidade de Lisboa, DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
22
|
Sotiropoulou NS, Xagoraris M, Revelou PK, Kaparakou E, Kanakis C, Pappas C, Tarantilis P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021; 10:foods10071671. [PMID: 34359541 PMCID: PMC8303172 DOI: 10.3390/foods10071671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review is to describe the chromatographic, spectrometric, and spectroscopic techniques applied to honey for the determination of botanical and geographical origin and detection of adulteration. Based on the volatile profile of honey and using Solid Phase microextraction-Gas chromatography-Mass spectrometry (SPME-GC-MS) analytical technique, botanical and geographical characterization of honey can be successfully determined. In addition, the use of vibrational spectroscopic techniques, in particular, infrared (IR) and Raman spectroscopy, are discussed as a tool for the detection of honey adulteration and verification of its botanical and geographical origin. Manipulation of the obtained data regarding all the above-mentioned techniques was performed using chemometric analysis. This article reviews the literature between 2007 and 2020.
Collapse
|
23
|
Characterizing the Volatile and Sensory Profiles, and Sugar Content of Beeswax, Beebread, Bee Pollen, and Honey. Molecules 2021; 26:molecules26113410. [PMID: 34199969 PMCID: PMC8200221 DOI: 10.3390/molecules26113410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Bee products are a well-known remedy against numerous diseases. However, from the consumers’ perspective, it is essential to define factors that can affect their sensory acceptance. This investigation aimed to evaluate the volatile and sensory profiles, and sugar composition of beeswax, beebread, pollen, and honey. According to the HS-SPME/GC-MS results, 20 volatiles were identified in beeswax and honey, then 32 in beebread, and 33 in pollen. Alkanes were found to dominate in beeswax, beebread, and pollen, while aldehydes and monoterpenes in honey. In the case of sugars, a higher content of fructose was determined in beebread, bee pollen, and honey, whereas the highest content of glucose was assayed in beeswax. In the QDA, the highest aroma intensity characterized as honey-like and sweet was found in honey, while the acid aroma was typical of beebread. Other odor descriptors, including waxy, pungent, and plant-based aromas were noted only in beeswax, honey, and pollen, respectively.
Collapse
|
24
|
Ghorab A, Rodríguez-Flores MS, Nakib R, Escuredo O, Haderbache L, Bekdouche F, Seijo MC. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia's Region (Algeria). Foods 2021; 10:foods10020225. [PMID: 33499111 PMCID: PMC7912395 DOI: 10.3390/foods10020225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to characterize the honeys of Babors Kabylia through sensory, melissopalynological and physico-chemical parameters. Thirty samples of honey produced in this region were collected over a period of two years and analyzed. All the samples presented physico-chemical parameters in conformity with legislation on honey quality, with few exceptions, linked mainly to beekeeping management. The pollen spectrum revealed a great diversity with 96 pollen types. The main pollen types were spontaneous species as Fabaceae (Hedysarum, Trifolium, Genisteae plants), Asteraceae plants, Ericaceae (Erica arborea L.) or Myrtus and Pistacia. The sensory properties of samples showed a high tendency to crystallization, the colors were from white to brown, but most of them had gold color. Smell and odor corresponded mainly to vegetal and fruity families and in taste perceptions besides sweetness highlighted sourness and saltiness notes. Seventeen samples were polyfloral, one was from honeydew and twelve were monofloral from heather, genista plants, sulla, blackberry or Asteraceae. Heather and the honeydew samples showed the darkest color, the highest electrical conductivity and phenol and flavonoid content. A statistical analysis based on the most representative pollen types, sensory properties and some physico-chemical components allowed the differentiation of honey samples in terms of botanical origin.
Collapse
Affiliation(s)
- Asma Ghorab
- Laboratoire d’Ecologie et Environnement, Faculté des Sciences de la Nature et de la Vie, Université A. Mira de Bejaia, Bejaia 06000, Algeria
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (M.S.R.-F.); (R.N.); (O.E.)
- Correspondence: (A.G.); (M.C.S.)
| | - María Shantal Rodríguez-Flores
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (M.S.R.-F.); (R.N.); (O.E.)
| | - Rifka Nakib
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (M.S.R.-F.); (R.N.); (O.E.)
- Laboratory of Food Quality and Food Safety, University of Mouloud Mammeri, Tizi Ouzou 15000, Algeria
| | - Olga Escuredo
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (M.S.R.-F.); (R.N.); (O.E.)
| | - Latifa Haderbache
- Research Laboratory in Food Technology (LRTA), M’hamed Bougara University, Avenue de l’indépendance, Boumerdes 35000, Algeria;
| | - Farid Bekdouche
- Department of Ecology and Environment, FSNV, University of Batna 2, Batna 05000, Algeria;
| | - María Carmen Seijo
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (M.S.R.-F.); (R.N.); (O.E.)
- Correspondence: (A.G.); (M.C.S.)
| |
Collapse
|