1
|
Martínez-Fajardo C, Navarro-Simarro P, Morote L, Rubio-Moraga Á, Mondéjar-López M, Niza E, Argandoña J, Ahrazem O, Gómez-Gómez L, López-Jiménez AJ. Exploring the viral landscape of saffron through metatranscriptomic analysis. Virus Res 2024; 345:199389. [PMID: 38714217 PMCID: PMC11101869 DOI: 10.1016/j.virusres.2024.199389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.
Collapse
Affiliation(s)
- Cristian Martínez-Fajardo
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lucía Morote
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Mondéjar-López
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Enrique Niza
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Javier Argandoña
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Alberto José López-Jiménez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
2
|
Yazdani Y, Radahmadi M, Roustazade R. Effects of Aqueous Saffron Extract on Glucoregulation as Well as Hepatic Agt and TNF-α Gene Expression in Rats Subjected to Sub-Chronic Stress. Adv Biomed Res 2023; 12:117. [PMID: 37434936 PMCID: PMC10331535 DOI: 10.4103/abr.abr_51_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 07/13/2023] Open
Abstract
Background Stress and saffron seem to affect glucoregulation mechanisms and insulin resistance in different ways. Impacts of the aqueous saffron extract were investigated on serum glucose levels, serum insulin levels, the homeostatic model assessment of β-cell function (HOMA-B), the homeostatic model assessment of insulin resistance (HOMA-IR), adrenal weight, and hepatic gene expression of angiotensinogen (Agt) and tumor necrosis factor-α (TNF-α) in rats under sub-chronic stress. Materials and Methods Forty-two male rats were divided into six groups: control, restraint stress (6h/day for seven days), saffron (30 and 60 mg/kg) treatments for seven days, and post-stress saffron (30 and 60 mg/kg) treatments for seven days. The serum glucose and insulin levels, hepatic gene expressions of Agt and TNF-α, HOMA-IR, HOMA-B, and adrenal gland weight were measured. Results One-week recovery following sub-chronic stress led to non-significant hyperglycemia, hyperinsulinemia, and insulin resistance. The hepatic Agt and TNF-α mRNA levels increased significantly in this group. Saffron administration led to enhanced hepatic Agt mRNA in the non-stressed subjects. In addition, serum glucose levels, insulin resistance, and hepatic Agt gene expression significantly increased in stress-saffron groups. The hepatic TNF-α gene expression was reduced only in the stress-saffron 60 group. Conclusion Saffron treatment after sub-chronic stress not only did not improve glucose tolerance but also enhanced insulin resistance. It indicated the interaction of saffron and sub-chronic stress to promote renin-angiotensin system activity. In addition, the saffron treatment decreased TNF-α gene expression after sub-chronic stress. The synergistic stimulating effect of saffron and sub-chronic stress on gene expression of hepatic Agt led to insulin resistance and hyperglycemia.
Collapse
Affiliation(s)
- Yeganeh Yazdani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Roustazade
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
4
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
5
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
6
|
Huang H, Zhu Y, Fu X, Zou Y, Li Q, Luo Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem 2022; 380:132216. [DOI: 10.1016/j.foodchem.2022.132216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
7
|
Darvish H, Ramezan Y, Khani MR, Kamkari A. Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron ( Crocus sativus L.). Food Sci Nutr 2022; 10:2082-2090. [PMID: 35702300 PMCID: PMC9179142 DOI: 10.1002/fsn3.2824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the microbial decontamination of saffron using the low-pressure cold plasma (LPCP) technology. Therefore, other quality characteristics of saffron that create the color, taste, and aroma have also been studied. The highest microbial log reduction was observed at 110 W for 30 min. Total viable count (TVC), coliforms, molds, and yeasts log reduction were equal to 3.52, 4.62, 2.38, and 4.12 log CFU (colony-forming units)/g, respectively. The lowest decimal reduction times (D-values) were observed at 110 W, which were 9.01, 3.29, 4.17, and 8.93 min for TVC, coliforms, molds, and yeasts. LPCP treatment caused a significant increase in the product's color parameters (L*, a*, b*, ΔE, chroma, and hue angle). The results indicated that the LPCP darkened the treated stigma's color. Also, it reduced picrocrocin, safranal, and crocin in treated samples compared to the untreated control sample (p < .05). However, after examining these metabolites and comparing them with saffron-related ISO standards, all treated and control samples were good.
Collapse
Affiliation(s)
- Haleh Darvish
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Yousef Ramezan
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research CenterTehran Medical SciencesIslamic Azad UniversityTehranIran
| | | | - Amir Kamkari
- Department of Food EngineeringFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
8
|
Mykhailenko O, Bezruk I, Ivanauskas L, Georgiyants V. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact. Arch Pharm (Weinheim) 2022; 355:e2100468. [PMID: 35048403 DOI: 10.1002/ardp.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/18/2022]
Abstract
The chemical compositions of 15 saffron samples from 11 countries (Morocco, India, Italy, Spain, Germany, Switzerland, Iran, Lithuania, Ukraine, Australia, and Azerbaijan) were evaluated. The samples were analyzed regarding the impact of environmental factors on the composition of apocarotenoids and phenolic constituents. Quantification of saffron metabolites was carried out using high-performance liquid chromatography. It was found that the high content of chlorogenic acid (0.2 mg/g, Ukraine) and ferulic acid (0.28 mg/g, India) was controlled by the duration of solar radiation during plant development. The accumulation of caffeic acid (the higher content 4.88 mg/g, Ukraine) in stigmas depended on the average air temperature. In contrast, the total crocins content according to the correlation analysis depended on the duration of solar radiation, the solar UV index, and the soil type. Rutin was found in all samples (0.83-8.74 mg/g). The highest amount of crocins (average 382.45 mg/g) accumulated in saffron from Italy and Ukraine. Crocins, picrocrocin, safranal, and rutin can further serve as saffron quality markers. All validation parameters were satisfactory and high-performance liquid chromatography methods could be successfully applied for the composition assessment of saffron metabolites. Saffron extracts showed the highest antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli (MICs 62.5-125 µg/ml).
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
| | - Ivan Bezruk
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
9
|
Annemer S, Ez zoubi Y, Ramzi A, El Hadrami EM, El Ouali Lalami A, Satrani B, Farah A. Variations in saffron quality in Morocco (Taliouine and Taznakht) according to altitude and provenance: Chemometric investigation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saoussan Annemer
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Yassine Ez zoubi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Biotechnology, Environmental Technology and Valorization of Bio‐Resources Team Department of Biology Faculty of Sciences and Techniques Al‐Hoceima Abdelmalek Essaadi University Tetouan Morocco
| | - Amal Ramzi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Abdelhakim El Ouali Lalami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Higher Institute of Nursing Professions and Health Techniques of Fez Regional Health Directorate Fez Meknes El Ghassani Hospital Fez Morocco
| | - Badr Satrani
- Forestry Research Center ‐ Rabat Rabat‐Agdal Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| |
Collapse
|
10
|
Morvaridzadeh M, Agah S, Dulce Estêvão M, Hosseini AS, Heydari H, Toupchian O, Abdollahi S, Persad E, Abu‐Zaid A, Rezamand G, Heshmati J. Effect of saffron supplementation on oxidative stress parameters: A systematic review and meta-analysis of randomized placebo-controlled trials. Food Sci Nutr 2021; 9:5809-5819. [PMID: 34646548 PMCID: PMC8498059 DOI: 10.1002/fsn3.2463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress (OS), the absence of equilibrium between prooxidants and antioxidants in the body, has been shown to play a pivotal role in the initiation and progression of many diseases. Saffron has been noted for its antioxidant capacity and can be used to improve OS parameters in unhealthy patients. Our aim was to evaluate the efficacy of saffron supplementation on OS parameters in unhealthy patients in randomized controlled trials (RCTs). We searched Medline, EMBASE, Cochrane CENTRAL, Scopus, and Web of Science without language restrictions for RCTs up until April 2021. Studies were included if they compared any form of saffron supplementation to placebo or no supplementation on OS parameters in unhealthy patients. Using a random-effects model with calculated standardized mean difference (SMD) and 95% confidence intervals (CI), we quantitatively synthesized the data. Heterogeneity was assessed using Cochrane's I 2 values. Ten randomized controlled trials were eligible for this review. Seven were included in the meta-analysis and indicated an association between saffron intake and a statistically significant decrease in malondialdehyde (MDA) levels (SMD: -0.40; 95% CI: -0.63, -0.17; I 2 = 32.6%) and a significant increase in total antioxidant capacity (TAC, SMD: 0.24; 95% CI: 0.05, 0.42; I 2 = 00.0%). Saffron intake was shown to significantly impact MDA and TAC, indicating its beneficial properties in improving OS in unhealthy patients. However, additional RCTs are required to evaluate the effect on other OS parameters.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| | - Shahram Agah
- Colorectal Research CenterIran University of Medical SciencesTehranIran
| | | | - Ava Sadat Hosseini
- Department of Education and Health PromotionSchool of HealthIran University of Medical SciencesTehranIran
| | - Hafez Heydari
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Omid Toupchian
- Department of Nutrition and public HealthSchool of HealthNorth Khorasan University of Medical SciencesBojnurdIran
| | - Shima Abdollahi
- Department of Nutrition and public HealthSchool of HealthNorth Khorasan University of Medical SciencesBojnurdIran
| | - Emma Persad
- Department for Evidence‐Based Medicine and EvaluationDanube University KremsKremsAustria
| | - Ahmed Abu‐Zaid
- Department of PharmacologyCollege of Graduate Health SciencesUniversity of Tennessee Health Science CenterMemphisTNUSA
| | | | - Javad Heshmati
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
11
|
Parizad S, Bera S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021:10.1007/s11356-021-15258-7. [PMID: 34235694 DOI: 10.1007/s11356-021-15258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Water is a fundamental necessity for people's well-being and the ecosystem's sustainability; however, its toxicity due to agrochemicals usage for food production leads to the deterioration of water quality. The poor water quality diminishes its reusability, thus limiting efficient water usage. Organic farming is one of the best ways that does not only reduce the deterioration of water quality but also decrease food toxicity. In organic farming, the crop is grown with no/less chemical usage. Besides, organic farming maintains biodiversity and reduces the anthropogenic footprint on soil, air, water, wildlife, and especially on the farming communities. Fields that are organically managed continuously for years have fewer pest populations and were attributed to increased biodiversity and abundance of multi-trophic interactions as well as to changes in plant metabolites. Fewer insect pests (pathogen vectors), in turn, would result in fewer crop diseases and increase crop production. This review highlights that organic farming may play a critical role in the reduction of pests and pathogens, which eventually would reduce the need for chemical reagents to protect crops, improving yield quality and water reusability.
Collapse
Affiliation(s)
- Shirin Parizad
- Department of Research and Development (Plant Probiotics), Nature Biotechnology Company (Biorun), Karaj, Iran.
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Determination of Saffron Volatiles by HS-SBSE-GC in Flavored Cured Ham. Molecules 2021; 26:molecules26072073. [PMID: 33916526 PMCID: PMC8038465 DOI: 10.3390/molecules26072073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022] Open
Abstract
At present, the development of new agri-food products, including flavored meat products presented in ready-to-eat vacuum packs, is encouraged. The addition of ingredients used as flavoring agents creates the need to be able to determine the volatile compounds responsible for their characteristic aroma. The aim of this study is to propose, develop, and validate a new method that uses headspace-stir bar sorptive extraction-gas chromatography/mass spectrometry (HS-SBSE-GC/MS) to determine the saffron aroma in cured ham flavored with this spice. Results showed that safranal was the main volatile compound that could be identified and quantified in cured ham flavored with saffron. This analytical method was adequate in terms of linearity, selectivity, sensitivity, and accuracy. To our knowledge, this is the first time that an HS-SBSE-GC/MS method for determining the saffron aroma of flavored cured ham has been developed and validated, and it is of interest to agri-food industries.
Collapse
|
13
|
Yogindran S, Kumar M, Sahoo L, Sanatombi K, Chakraborty S. Occurrence of Cotton leaf curl Multan virus and associated betasatellites with leaf curl disease of Bhut-Jolokia chillies (Capsicum chinense Jacq.) in India. Mol Biol Rep 2021; 48:2143-2152. [PMID: 33635470 PMCID: PMC7908524 DOI: 10.1007/s11033-021-06223-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Geminiviridae comprises the largest family of plant viruses which causes severe crop losses in India. The highest pungency chilli Bhut-Jolokia or ghost pepper (Capsicum chinense Jaqc.) hails from North-East region of India and is used in many dishes to add flavors and also for its medicinal value. However, this chilli variety is also affected by viruses leading to crop and economic losses. The present study reports the identification of begomoviruses in the infected chilli Bhut-Jolokia leaf samples collected from eight different places of North-East region (Manipur) of India. The infected leaf samples were screened for the presence of viral genome by rolling circle amplification (RCA) followed by PCR using degenerate primer pairs. The subsequent analyses using restriction fragment length polymorphism and sequencing revealed the presence of Cotton leaf curl Multan virus (CLCuMuV), and Tomato leaf curl Patna betasatellite (ToLCPaB). The findings focus on the phylogenetic relatedness, probable recombinational hot-spots and evolutionary divergence of the viral DNA sequences with the current reported begomoviral genome. To the best of our knowledge, this is the first report showing the presence of CLCuMuV, and associated non-cognate ToLCPaB with leaf curl disease of Bhut-Jolokia chillies. The study reveals potential recombination sites on both viral genome and betsatellite which, during the course of evolution, may have aided the virus to progress and successfully establish infection in chilli plants. Taken together, our results suggest a possible spread of CLCuMuV to the hitherto non-host crop in the North-East region of India.
Collapse
Affiliation(s)
- Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Lingaraj Sahoo
- Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Effect of Crocus sativus L. Stigmas Microwave Dehydration on Picrocrocin, Safranal and Crocetin Esters. Foods 2021; 10:foods10020404. [PMID: 33673099 PMCID: PMC7918863 DOI: 10.3390/foods10020404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
The dehydration process is the basis to obtain high quality saffron and to preserve it for a long time. This process modifies saffron’s main metabolites that define its quality, and are responsible for the characteristic color, taste, and aroma of the spice. In this work, the effect of microwave dehydration on saffron main metabolites (picrocrocin, safranal and crocetin esters) from Crocus sativus L. stigmas at three determinate powers and different time lapses was evaluated. The results showed that this dehydration process obtained similar or lower crocetin esters content, and after three months of storage, higher concentration was shown in treatments at 440 W for 36 s, 55 s, and 73 s; at 616 W for 90 s; and at 800 W for 20 s. Picrocrocin content was lower and safranal content was higher in all treatments compared to the control both before and after storage. Regarding to commercial quality, microwave dehydration obtained Category I of saffron according to International Standard Organization (ISO) 3632. After three months of storage, treatments at 616 W for 83 s and 800 W for 60 s obtained lower categories. The results obtained suggest that microwave dehydration is a suitable process for obtaining high quality saffron, 800 W with 6 lapses of 20 s being the best conditions studied.
Collapse
|