1
|
Luo T, He Y, Jiang L, Yang L, Hou X, Shen G, Cui Q, Yu J, Ke J, Chen S, Zhang Z. Flavor perception and biological activities of bitter compounds in food. Food Chem 2025; 477:143532. [PMID: 40057996 DOI: 10.1016/j.foodchem.2025.143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Bitter compounds in food produce a distinct bitter taste that significantly influences overall flavor and quality, while also possessing valuable biological activities. Therefore, a systematic review summarizing recent research advances on bitter compounds is necessary for a better understanding of them. This review discusses the sources of bitter substances in food, the mechanism of bitterness perception, their biological activities and key issues for future research. Bitter compounds in food mainly include polyphenols, alkaloids, terpenoids, bitter peptides and Maillard reaction products. Bitter substances bind to specific sites on bitter taste receptors (TAS2Rs), activating G protein-mediated downstream signaling pathways that lead to the perception of bitterness. Additionally, many bitter compounds possess biological activities, such as regulating food intake and exhibiting anti-cancer, anti-inflammatory and antioxidant activities. This review highlights the potential to exploit the bioactivity of bitter compounds to enhance the nutritional value and functionality of food.
Collapse
Affiliation(s)
- Tingting Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yanni He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Lanxin Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, China.
| | - Shanbo Chen
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
2
|
Li G, Wang X, Wang Q, Han L, Bai J, Wang F, Yu B, Liu Z, Long X, Cheng Y. Coumarins rather than alkylamides evoke the numbing orosensation of pomelo peel. Food Chem 2025; 463:141502. [PMID: 39368197 DOI: 10.1016/j.foodchem.2024.141502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Liangpingyou, a well-known Chinese pomelo (Citrus grandis L.) variety, elicits a unique and uncharacterized numbing aftertaste. To understand the molecular bases and characteristics of the pomelo-induced numbing sensation, we first determined that hydroxyl sanshools, the major Sichuan pepper chemosensates, were not responsible via silylation-GC-MS analysis. Pomelo peel juice was then subjected to solid-phase extraction to form 4 fractions, and key sensory-active substances were screened via taste dilution analysis. Three simple coumarins, meranzin hydrate, isomeranzin, and marmin, were identified to induce numbing, which has not been previously reported. Sensory studies via extensively modified half-tongue tests and verification steps revealed recognition thresholds within 0.49-1.78, 0.32-1.56, and 0.43-1.46 μmol/L for numbness, pungency, and astringency, respectively. The temporal dominance trends showed the following taste notes: Meranzin hydrate-numbing dominated, isomeranzin-numbing and pungent, and marmin-astringent and numbing. Molecular docking analysis suggested that coumarins target the receptors TRPV1, TPRA1, and KCNK3.
Collapse
Affiliation(s)
- Guijie Li
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Xuting Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qundi Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Leng Han
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Fusheng Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Bo Yu
- Sichuan Dan Orange Modern Fruit Industry Co., Ltd, Danling, 620200, China
| | - Zhaojun Liu
- Chongqing Liangping District Agriculture and Rural Committee, Chongqing, 405200, China
| | - Xingyao Long
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, 400067, China.
| | - Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| |
Collapse
|
3
|
Zhang Y, Yang E, Chen M, Zhang J, Liu Q, Lei Z, Xu T, Cai X, Feng C. Quality diversity of three calcium-rich Primulina vegetables: A comprehensive analysis of calcium content, metabolite profiles, taste characteristics, and medicinal potential. Food Chem 2025; 463:141538. [PMID: 39388873 DOI: 10.1016/j.foodchem.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Primulina plants native to karst regions are exceptionally rich in calcium and have been developed into high‑calcium leafy vegetables. However, limited knowledge of their metabolites, taste characteristics, and potential medicinal value restricts further genetic improvements. This study conducted a comprehensive analysis on three breeding species of Primulina vegetables. Common garden experiment demonstrated significant calcium enrichment capability, with calcium content ranging from 204.45 to 391.52 mg/100 g. Through widely-targeted metabolomics, 1121 metabolites were identified within these Primulina vegetables. Furthermore, comparative analysis identified 976 differentially accumulated metabolites across nine comparison groups, driven mainly by flavonoids, phenolic acids, and lipids. Integration of electronic tongue analysis and metabolomics revealed taste profiles and identified 17 key candidate compounds related to taste. Based on network pharmacology analysis, 32 active ingredients were found in Primulina vegetables, which highlighted potential medicinal value. These findings provide a data-driven foundation for breeding programs aimed at enhancing nutritional and flavor traits.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinxia Cai
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| |
Collapse
|
4
|
Xiang X, Chen K, Li A, Yang G, An X, Kan J. Decoding the bitter taste of Idesia polycarpa var. vestita Diels fruit: Bitterness contribution and mechanisms. Food Chem 2024; 460:140609. [PMID: 39094345 DOI: 10.1016/j.foodchem.2024.140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
To comprehensively explore the contribution and mechanisms of identified low-threshold bitter substances in Idesia polycarpa var. vestita Diels (I. vestita) fruit, we performed quantification and elucidated their interactions with main bitter taste receptors through molecular docking. The established method for quantifying bitter compounds in I. vestita fruit was validated, yielding satisfactory parameters for linearity, stability, and accuracy. Idescarpin (17.71-101.05 mg/g) and idesin (7.88-77.14 mg/g) were the predominant bitter compounds in terms of content. Taste activity values (TAVs) exceeded 10 for the bitter substances, affirming their pivotal role as major contributors to overall bitterness of I. vestita fruit. Notably, idescarpin with the highest TAV, played a crucial role in generating the bitterness of I. vestita fruit. Hydrogen bonds and hydrophobic interactions were the main driving forces. This study holds potential implications for industrial development of I. vestita fruit by providing novel insights into the mechanism underlying its bitterness formation.
Collapse
Affiliation(s)
- Xuwen Xiang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Xiaofeng An
- Chongqing Shanlinyuan Forestry Comprehensive Development Co., Ltd., Chongqing 400800, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Xie J, Wen H, Shi Y, Wei F, Jiang J, Luo L, Zeng L. Exploration of the mechanism of temperature influence on bitter taste of theacrine by activating human bitter taste receptor hTAS2R14. Food Res Int 2024; 193:114857. [PMID: 39160053 DOI: 10.1016/j.foodres.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Theacrine, a purine alkaloid derived from Camellia assamica var. kucha, has a distinct bitter taste. Our previous study found the lower recognition threshold of theacrine at 25 °C than 45 °C. This study aims to investigate the bitterness characterizations of theacrine at aforementioned temperatures and its taste perception mechanism. Sensory analysis exhibited higher bitterness intensity for theacrine at 25 °C than 45 °C. Subsequently, flow cytometry was performed to verify the above characterization at the cellular level. It revealed that theacrine could activated the bitter receptor hTAS2R14 and the calcium signal at 25 °C was higher than 45 °C. Ultimately, the interaction mechanism was studied by molecular dynamics simulations, indicating that the conformation of theacrine-hTAS2R14 had a higher binding capacity and better stability at 25 °C. Overall, temperature affected the binding of theacrine to the bitter receptor hTAS2R14, resulting in the stronger bitterness intensity of theacrine at 25 °C than 45 °C.
Collapse
Affiliation(s)
- Jizhou Xie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China
| | - Haitao Wen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- Modern Logistics of China Railway No.8 Engineering Group CO., LTD, Chengdu 610306, Sichuan, China
| | - Fang Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China
| | - Jielin Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Dayi Tea Group Menghai Tea Factory Co., Yunnan 666100, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China.
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China.
| |
Collapse
|
6
|
Zhang MM, Dang M, Wu X, Ou L, Li M, Zhao CB, Wei PF, Dong TW, Li Y, Wu CJ. Da-Jian-Zhong decoction alleviates diarrhea-predominant irritable bowel syndrome via modulation of gut microbiota and Th17/Treg balance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118275. [PMID: 38729534 DOI: 10.1016/j.jep.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Jian-Zhong decoction (DJZD) is a herbal formula clinically used for abdominal pain and diarrhea induced by spleen-Yang deficiency syndrome. Recently, treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) with DJZD has received increasing attention, but the underlying mechanism of action remains elusive. AIM OF THE STUDY We aimed to evaluate the therapeutic effect of DJZD on IBS-D rats and to elucidate the underlying mechanisms. MATERIALS AND METHODS An IBS-D rats model was constructed using a two-factor superposition method of neonatal maternal separation and Senna folium aqueous extract lavage. Moreover, the effect of DJZD was evaluated based on the body weight, rectal temperature, abdominal withdrawal reflex (AWR), and Bristol stool scale score (BSS). The factors that regulate the DJZD effects on IBS-D were estimated using whole microbial genome, transcriptome sequencing (RNA-Seq), flow cytometry, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses. RESULTS We found that DJZD alleviated the symptoms of IBS-D rats, with the low-dose (2.4 g/kg) as the better ones, as shown by the higher body weight and lower AWR score and BSS. At the phylum level, the relative abundance of Bacteroidetes was obviously increased, and at the genus level, Lactobacillus and Parabacteroides were increased, while that of Firmicutes_bacterium_424 and Ruminococcus gnavus was decreased in DJZD group. Furthermore, the significantly enriched GO terms after treatment with DJZD mainly included the immune response, positive regulation of activated T cell proliferation, and positive regulation of interleukin-17 (IL-17) production. Importantly, flow cytometry analysis further revealed that the T helper cell type 17/regulatory T cell (Th17/Treg) balance contributed to the DJZD-induced alleviation of IBS-D symptoms, as DJZD downregulated Th17/Treg ratio and Th17 cell-related cytokines IL-17 and IL-6 levels in the colon. CONCLUSIONS These results demonstrated that DJZD has a good therapeutic effect on IBS-D rats, probably by maintaining the homeostasis of gut microbiota and regulating Th17/Treg balance and its related inflammatory factors.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Ming Dang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Chong-Bo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Pei-Feng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Tai-Wei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yao Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 61137, PR China.
| |
Collapse
|
7
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
8
|
Xiang X, Yang Q, Chen K, Wang Z, Yang G, Li A, An X, Kan J. Characterization of key bitter compounds in Idesia polycarpa var. vestita Diels fruit by sensory-guided fractionation. Food Chem 2024; 439:138103. [PMID: 38056337 DOI: 10.1016/j.foodchem.2023.138103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Idesia polycarpa var. vestita Diels (I. vestita) has become a promising oil crop due to its easily digestible and highly nutritious fruit oil. However, the intense bitter taste of its fruit greatly limits its development and promotion in the food industry. Herein, five key bitter compounds from I. vestita fruit were isolated by sensory-guided fractionation and characterized using ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometer and nuclear magnetic resonance. The bitter taste of the identified compounds was subsequently validated by threshold tests and computational molecular docking. The bitterness threshold in water of idesin was the lowest (12.051 mg/L), and all bitter substances spontaneously bound to the bitter receptors hTAS2R16 and hTAS2R14, with a stronger affinity for the latter (approximately -6.5 - -9.0 kcal/mol). This is the first systematic study of bitter compounds in I. vestita fruit, providing a scientific basis for revealing the mechanism of bitterness formation and bitterness control.
Collapse
Affiliation(s)
- Xuwen Xiang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Qingqing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Xiaofeng An
- Chongqing Shanlinyuan Forestry Comprehensive Development Co., Ltd., Chongqing 400800, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Shu L, Zhang S, Qiu H, Yao Y, Liu S, Qian J, Chen S, Zhao Q, Li Y. Rapid classification and identification of chemical components in three different Zanthoxylum species by ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. J Sep Sci 2024; 47:e2300670. [PMID: 38356230 DOI: 10.1002/jssc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/16/2024]
Abstract
Zanthoxylum, as a medicinal and edible herbal medicine, has a long history and complex chemical composition. There are many varieties of Zanthoxylum, and there are differences in composition between varieties. In this study, a rapid classification and identification method for the main components of Zanthoxylum was established using ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. The components of Shandong Zanthoxylum bungeanum, Wudu Zanthoxylum bungeanum, and Zanthoxylum schinifolium were identified by studying the characteristic fragmentations and neutral losses of characteristic components. A total of 48 common components and 24 different components were identified and the fragmentation patterns of the main components, such as flavonoids, alkaloids, and organic acids were summarized. These findings provided a reference for the study of pharmacodynamic substance basis and quality control of different varieties of Zanthoxylum.
Collapse
Affiliation(s)
- Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Shumin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huixin Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Sitong Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jun Qian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Siyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Qiduo Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
11
|
Yang J, Qiu M, Lu T, Yang S, Yu J, Lin J, Ma H, Guo Z, Chen Z, Han X, Zhang D. Discovery and verification of bitter components in Panax notoginseng based on the integrated strategy of pharmacophore model, system separation and bitter tracing technology. Food Chem 2023; 428:136716. [PMID: 37413835 DOI: 10.1016/j.foodchem.2023.136716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Panax notoginseng is a world-renowned tonic herb, which has been used as a characteristic food in Southwest China for hundreds of years. However, the taste of Panax notoginseng is extremely bitter and serious after tasting, and its bitter components are unknown. This manuscript proposes a new strategy for discovering bitter components of Panax notoginseng based on the integrated analysis of pharmacophore model, system separation and bitter tracing technology. Firstly, 16 potential bitter components were obtained by UPLC-Q-Orbitrap HRMS combined with virtual screening, most of which were saponins.Then, the bitter components were further separated by system component separation and 5 potential bitter components were obtained. Finally, the main contributors of bitterness in Panax notoginseng were verified to be Ginsenoside Rg1, Ginsenoside Rb1 and Ginsenoside Rd by components knock-in and fNIRS. In general, this paper is the first literature report on the relatively systematic study of bitter components in Panax notoginseng.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Tai Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shangdong Yang
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Hongyan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co. Ltd., Chengdu 610041, PR China
| | - Zhencai Chen
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China.
| | - Xue Han
- Chengdu Medical College, Chengdu 610500, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China.
| |
Collapse
|
12
|
Zhang J, Zhang M, Chen K, Bhandari B, Deng D. Impact of cooking methods on the quality, sensory and flavor compounds of Sichuan pepper oleoresin. Food Chem 2023; 427:136639. [PMID: 37392624 DOI: 10.1016/j.foodchem.2023.136639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Sichuan pepper oleoresin (SPO) is highly appreciated by the food industry as well as consumers for flavor. To understand the overall flavor of SPO and how the quality changes during practical application, this study investigated the effects of five cooking methods on the quality, sensory, and flavor compounds of SPO. The differences in physicochemical properties and sensory evaluation responded to potential changes in SPO after cooking. The SPO after different cooking could be clearly distinguished by E-nose and PCA. Based on the qualitative analysis of volatile compounds, 13 compounds were screened by OPLS-DA that had the ability to explain above differences. Further analysis of taste substances revealed that pungent substances (hydroxy-α-sanshool) were significantly reduced in SPO after cooking. And the conclusion that the degree of bitterness significantly increased was predicted by E-tongue. The PLS-R model was developed to achieve correlation analysis between aroma molecules and sensory quality.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Separation and Purification of Hydroxyl-α-Sanshool from Zanthoxylum armatum DC. by Silica Gel Column Chromatography. Int J Mol Sci 2023; 24:ijms24043156. [PMID: 36834566 PMCID: PMC9966115 DOI: 10.3390/ijms24043156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hydroxyl-α-sanshool is the main alkylamide produced by Zanthoxylum armatum DC., and it is responsible for numbness after consuming Z. armatum-flavored dishes or food products. The present study deals with the isolation, enrichment, and purification of hydroxyl-α-sanshool. The results indicated that the powder of Z. armatum was extracted with 70% ethanol and then filtrated; the supernatant was concentrated to get pasty residue. Petroleum ether (60-90 °C) and ethyl acetate at a 3:2 ratio, with an Rf value of 0.23, were chosen as the eluent. Petroleum ether extract (PEE) and ethyl acetate-petroleum ether extract (E-PEE) were used as the suitable enriched method. Afterward, the PEE and E-PEE were loaded onto silica gel for silica gel column chromatography. Preliminary identification was carried out by TLC and UV. The fractions containing mainly hydroxyl-α-sanshool were pooled and dried by rotary evaporation. Lastly, all of the samples were determined by HPLC. The yield and recovery rates of hydroxyl-α-sanshool in the p-E-PEE were 12.42% and 121.65%, respectively, and the purity was 98.34%. Additionally, compared with E-PEE, the purity of hydroxyl-α-sanshool in the purification of E-PEE (p-E-PEE) increased by 88.30%. In summary, this study provides a simple, rapid, economical, and effective approach to the separation of high-purity hydroxyl-α-sanshool.
Collapse
|
14
|
Yan J, Tong H. An overview of bitter compounds in foodstuffs: Classifications, evaluation methods for sensory contribution, separation and identification techniques, and mechanism of bitter taste transduction. Compr Rev Food Sci Food Saf 2023; 22:187-232. [PMID: 36382875 DOI: 10.1111/1541-4337.13067] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The bitter taste is generally considered an undesirable sensory attribute. However, bitter-tasting compounds can significantly affect the overall flavor of many foods and beverages and endow them with various beneficial effects on human health. To better understand the relationship between chemical structure and bitterness, this paper has summarized the bitter compounds in foodstuffs and classified them based on the basic skeletons. Only those bitter compounds that are confirmed by human sensory evaluation have been included in this paper. To develop food products that satisfy consumer preferences, correctly ranking the key bitter compounds in foodstuffs according to their contributions to the overall bitterness intensity is the precondition. Generally, three methods were applied to screen out the key bitter compounds in foods and beverages and evaluate their sensory contributions, including dose-over-threshold factors, taste dilution analysis, and spectrum descriptive analysis method. This paper has discussed in detail the mechanisms and applications of these three methods. Typical procedures for separating and identifying the main bitter compounds in foodstuffs have also been summarized. Additionally, the activation of human bitter taste receptors (TAS2Rs) and the mechanisms of bitter taste transduction are outlined. Ultimately, a conclusion has been drawn to highlight the current problems and propose potential directions for further research.
Collapse
Affiliation(s)
- Jingna Yan
- College of Food Science, Southwest University, Chongqing, China
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
16
|
Application of response surface methodology (RSM) for optimization of the supercritical CO2 extract of oil from Zanthoxylum bungeanum pericarp: Yield, composition and gastric protective effect. Food Chem X 2022; 15:100391. [PMID: 36211759 PMCID: PMC9532734 DOI: 10.1016/j.fochx.2022.100391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Supercritical carbon-dioxide (SC-CO2) extract is an effective technology for flavor components of Z. bungeanum pericarp. About 11.07 % oil yield can be obtained under the optimized parameters of 30 MPa, 43 °C, and 75 min. Limonene, linalool, hydroxy-α-sanshool and hydroxy-β-sanshool are the major flavor components of SZB. SZB supplementation could be employed as a gastric protective agent/additive for human health. Nineteen potential biomarkers were identified as the potential biomarkers contributed to the gastric protective effect of SZB.
Supercritical carbon-dioxide (SC-CO2) is a promising two-phase technology for flavor components (volatile oil and alkylamides) extract from Zanthoxylum bungeanum pericarp. However, the gastric protective effect of SC-CO2 extract from Z. bungeanum (SZB) have not been systematically investigated. In this study, response surface methodology (RSM) was employed to optimize the yield of SZB, and the average yield of 11.07 % were obtained under optimal parameters (30 MPa, 43 °C and time 75 min). Here, limonene, linalool and hydroxy-α-sanshool were identified as the main compounds of SZB by GC–MS and UPLC-Q-Extractive Orbitrap/MS analysis. When the gastric protective effect of SZB (5, 10 and 20 mg/kg, p.o.) were evaluated, significant increase in body weight and organ indexes of rat, and decreased gastric lesion were observed. Furthermore, nineteen serum metabolites were regarded as the potential biomarkers for the gastric protective effect of SZB. Collectively, this study provides a comprehensive perspective into the chemical composition analysis and gastric protective effect of Z. bungeanum SC-CO2 extract.
Collapse
|
17
|
Wei W, Liu S, Han Y, Lu S, Yan G, Sun H, Wang X. Rapid identification of chemical components in Zhizi Baipi decoction by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with a novel informatics UNIFI platform. J Sep Sci 2022; 45:3679-3690. [PMID: 35943222 DOI: 10.1002/jssc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Zhizi Baipi Decoction is a classic traditional Chinese medicine formula for the treatment of jaundice and various liver diseases. The chemical components of Zhizi baipi decoction were not clear resulting from the paucity of relevant studies, which hindered the elucidation of the pharmacological mechanism, the comprehensive development and utilization of Zhizi baipi decoction in clinical. In this study, ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry combined with UNIFI natural product information analysis platform was used to rapidly analyze and identify the chemical components in Zhizi baipi decoction. A total of 122 chemical components, including 53 flavonoids, 16 alkaloids, 25 terpenoids, 5 phenylpropanoids, 14 organic acids, and 7 others, were identified from Zhizi baipi decoction. These compounds may be the active components of Zhizi baipi decoction. The method established in this study can systematically, rapidly, and accurately resolve the chemical components in Zhizi baipi decoction, which lays the foundation for further establishment of the pharmacodynamic substance basis and quality control of Zhizi baipi decoction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenfeng Wei
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Shaobo Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Shengwen Lu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
18
|
Cao Y, Ren M, Yang J, Guo L, Lin Y, Wu H, Wang B, Lv R, Zhang C, Gong X, Wang H. Comparative metabolomics analysis of pericarp from four varieties of Zanthoxylum bungeanum Maxim. Bioengineered 2022; 13:14815-14826. [PMID: 36274249 PMCID: PMC9601549 DOI: 10.1080/21655979.2022.2108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
A qualitative and quantitative analysis of metabolites was performed by metabolomics comparation on the pericarps of four varieties of Zanthoxylum bungeanum Maxim. The Zanthoxylum bunganum as scion combined with three rootstock varieties of Zanthoxylum piasezkii Maxim (YJ), July Zanthoxylum bunganum Maxim (QJ), and August Zanthoxylum bunganum Maxim (BJ), at the same time Zanthoxylum bungeanum seedlings breeding were compared as control (MJ). A total of 1429 metabolites were identified in Zanthoxylum bungeanum Maxim pericarps based on chromatography and mass spectrometry dual detection platform. While the metabolites between four varieties of Z. bungeanum varied, there was identified 31, 15, 7, 79, 42, 19 down-regulated and 55, 50, 13, 75, 43, 27 up-regulated differential metabolites between MJ and BJ, MJ and QJ, MJ and YJ, QJ and BJ, YJ and BJ, YJ and QJ. Meanwhile, the differential metabolites composition was distinct among various varieties of Z. bungeanum and dominant by phenolic compounds flavonoid and phenolic acids, especially highest in varieties July Zanthoxylum bunganum Maxim. Highlight A comparative metabolomics analyzed in four varieties of Zanthoxylum bungeanum pericarp.Total 1429 metabolites were identified and mainly in flavonoid and phenolic acid.July and August Zanthoxylum bunganum Maxim has highest antioxidant capacity.The rootstock July Zanthoxylum bunganum Maxim was recommended in Loess Plateau.
Collapse
Affiliation(s)
- Yonghong Cao
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Miao Ren
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Jianlei Yang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Lixin Guo
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Yun Lin
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Heng Wu
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Bo Wang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Ruie Lv
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Chunhui Zhang
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Xutong Gong
- Zanthoxylum Bungeanum Research Institute, Longnan Economic Forest Research Institute, Longnan, China
| | - Han Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China,CONTACT Han Wang Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
| |
Collapse
|
19
|
Shi Y, Zhang SR, Sun K, Wang XH, Jiang JL, Luo LY, Zeng L. Characterization of bitter taste theacrine in Pu-erh tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Huang S, Zhang T, Li H, Zhang M, Liu X, Xu D, Wang H, Shen Z, Wu Q, Tao J, Xia W, Xie X, Liu F. Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sens 2021; 6:4108-4117. [PMID: 34757732 DOI: 10.1021/acssensors.1c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tongue is a unique organ that senses tastes, and the scientific puzzle about whether electricity can evoke taste sensations and how the sensations have been distributed on the tongue has not been solved. Investigations on tongue stimulation by electricity might benefit the developments of techniques for clinical neuromodulation, tissue activation, and a brain-tongue-machine interface. To solve the scientific puzzle of whether electrical stimulation induces taste-related sensations, a portable flexible tongue electrode array system (FTEAS) was developed, which can synchronously provide electrical stimulation and signal mapping at each zone of the tongue. Utilizing the FTEAS to perform tests on the rat tongue in vivo, specific electrical signals were observed to be evoked by chemical and electrical stimulations. The features and distributions of the electric signals evoked during the rat tongue tests were systematically studied and comprehensively analyzed. The results show that an appropriate electrical stimulation can induce multiple sensations simultaneously, while the distribution of each sensation was not significantly distinguished among different zones of the tongue, and at the same time, this taste-related electrical signal can be recorded by the FTEAS. This work establishes a promising platform to solve the scientific puzzle of how sensations are activated chemically and electrically on the tongue and may provide advanced noninvasive oral-electrotherapy and a brain-tongue-machine interface.
Collapse
Affiliation(s)
- Shuang Huang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiran Shen
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianni Wu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Tao
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Xia
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Cheng J, Ke J, Hou X, Li S, Luo Q, Shen G, Wu H, Li M, Liu X, Chen A, Zhang Z. Changes in qualities of dried Zanthoxylum armatum DC. at different storage methods. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|