1
|
Huang Y, Liu L, Sun B, Zhu Y, Lv M, Li Y, Zhu X. A Comprehensive Review on Harnessing Soy Proteins in the Manufacture of Healthy Foods through Extrusion. Foods 2024; 13:2215. [PMID: 39063299 PMCID: PMC11276047 DOI: 10.3390/foods13142215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.
Collapse
Affiliation(s)
- Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Bingyu Sun
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| |
Collapse
|
2
|
Houketchang Ndomou SC, Balti BT, Tambo ST, Nanga Ndjang MM, Kaskawa K, Kouebou C, Womeni HM. Influence of weevil on the physicochemical characteristics, functional properties, and nutritional value of rice ( Oryza sativa L.) produced at Yagoua (far-north Cameroon). Heliyon 2024; 10:e30918. [PMID: 38774101 PMCID: PMC11107242 DOI: 10.1016/j.heliyon.2024.e30918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
The infestation of rice by pests during the post-harvest phase is one of the consequences of the deterioration of its technological and nutritional quality. Therefore, the present study was carried out to determine the physico-chemical characteristics, functional properties and nutritional value of uninfested and weevil-infested rice during storage. To this end, rice samples were collected from a rice production unit in the Far North Region of Cameroon. The physico-chemical and functional properties of uninfested and infested rice flours were determined using standard methods. The results showed that among the functional properties, only porosity showed a significant difference (p˂0.05) between infested (13.88 %) and uninfested (17.30 %) rice flours. Concerning the proximate composition, except for the carbohydrate content, where a significant decrease (p˂0.05) was observed between infested (68.15 %) and non-infested (58.43 %) rice flours, no significant difference (p > 0.05) was observed for the other nutrients evaluated. It was also observed that weevil infestation had a significant (p < 0.05) effect on the mineral content of the rice samples. Furthermore, scanning electron microscopy analysis revealed the presence of smaller granules with imprecise shapes in non-infested rice flour. Thus, this study showed that weevil infestation had a significant negative impact on the nutritional quality of rice and that good practices must be adopted by producers to ensure the quality of rice grains during storage.
Collapse
Affiliation(s)
- Serge Cyrille Houketchang Ndomou
- CRESA Forêt-Bois, Faculty of Agronomy and Agricultural Science, University of Dschang, P.O Box 188, Yaounde, Cameroon
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Beatrice Tapita Balti
- CRESA Forêt-Bois, Faculty of Agronomy and Agricultural Science, University of Dschang, P.O Box 188, Yaounde, Cameroon
| | - Stephano Tene Tambo
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Marie Madeleine Nanga Ndjang
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Katlafadaou Kaskawa
- Society for the Expansion and Modernization of Rice Cultivation in Yagoua, P.O. Box 46, Yagoua, Cameroon
| | - Christiant Kouebou
- Institute of Agricultural Research for Development, P.O. Box 415, Garoua, Cameroon
| | - Hilaire Macaire Womeni
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
3
|
Allai FM, Junaid PM, Azad Z, Gul K, Dar B, Siddiqui SA, Manuel Loenzo J. Impact of moisture content on microstructural, thermal, and techno-functional characteristics of extruded whole-grain-based breakfast cereal enriched with Indian horse chestnut flour. Food Chem X 2023; 20:100959. [PMID: 38144831 PMCID: PMC10739762 DOI: 10.1016/j.fochx.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
The use of non-conventional seed flour is of interest in obtaining healthy breakfast cereals. The research aimed to study the physico-functional, bioactive, microstructure, and thermal characteristics of breakfast cereals using scanning electron microscopy, X-ray diffractometry, and differential scanning calorimeter. The increase in feed moisture content (16 %) enhanced the bulk density (5.24 g/mL), water absorption index (7.76 g/g), total phenolic content (9.03 mg GAE/g), and antioxidant activity (30.36 %) having desirable expansion rate (2.84 mm), water solubility index (48 %), and color attributes. The microstructure showed dense inner structures with closed air cells in extruded flours. Extrusion treatment rearranged the crystalline structure from A-type to V-type by disrupting the granular structure of starch, reducing its crystallinity, and promoting the formation of an amylose-lipid complex network. Increasing conditioning moisture enhanced the degree of gelatinization (%), peak gelatinization temperature (Tp), and starch crystallinity (%) and reduced the gelatinization enthalpy (ΔHG) and gelatinization temperature ranges. The results reported in this study will help industries to develop innovative and novel food products containing functional ingredients.
Collapse
Affiliation(s)
- Farhana Mehraj Allai
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, India
| | - Pir Mohammad Junaid
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
| | - Z.R.A.A. Azad
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, United Kingdom
| | - B.N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D Quakenbrück, Germany
| | - Jose Manuel Loenzo
- CentroTecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| |
Collapse
|
4
|
Khoza M, Kayitesi E, Dlamini BC. Functional properties and in vitro starch digestibility of infrared-treated (micronized) green banana flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4329-4339. [PMID: 36799097 DOI: 10.1002/jsfa.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The consumption of green banana flour (GBF) products has been linked to reduced glycemic index (GI) and low risk of type 2 diabetes and obesity. The purpose of this study was to investigate the effect of micronization (high-intensity infrared heating method) on the molecular, microstructure and in vitro starch digestibility of five GBF cultivars grown in South Africa. The GBF was micronized at three surface temperatures (90, 120 and 150 °C for 30 min) and the in vitro starch digestibility was determined with Megazyme kits. RESULTS Micronization at the highest temperature (150 °C) increased the swelling power by 6.00% in all five GBF cultivars when compared to control (unmicronized GBF). Micronization slightly reduced the resistant starch (RS) of the GBF cultivars by up to 8.63%. The FHIA-01 cultivar showed the highest RS (86.50%), whereas Grande Naine - 150 °C cultivar had the lowest RS (76.00%). Both micronized and control GBF exhibited similar X-ray diffraction patterns with all cultivars and at all micronization temperatures. Similarly, the functional properties of the GBF were not altered by micronization when observed with Fourier transform infrared spectroscopy. Scanning electron microscopy showed changes in the surface morphology of starch granules after micronization and these were dependent on temperature. CONCLUSION Overall, micronization at 120 °C showed the best improvement in functional properties of GBF and this makes it suitable for potential application for the manufacture of instant breakfast products, baked goods and pasta. In addition, the micronized GBF cultivars retained high RS, suggesting potential health benefits for people with diabetes and obesity. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Minenhle Khoza
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Johannesburg, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Bhekisisa C Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Bioactive, Mineral and Antioxidative Properties of Gluten-Free Chicory Supplemented Snack: Impact of Processing Conditions. Foods 2022; 11:foods11223692. [PMID: 36429284 PMCID: PMC9688964 DOI: 10.3390/foods11223692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of chicory root addition (20-40%) and extrusion conditions (moisture content from 16.3 to 22.5%, and screw speed from 500 to 900 rpm) on bioactive compounds content (inulin, sesquiterpene lactones, and polyphenols) of gluten-free rice snacks. Chicory root is considered a potential carrier of food bioactives, while extrusion may produce a wide range of functional snack products. The mineral profiles were determined in all of the obtained extrudates in terms of Na, K, Ca, Mg, Fe, Mn, Zn, and Cu contents, while antioxidative activity was established through reducing capacity, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) tests. Chicory root addition contributed to the improvement of bioactive compounds and mineral contents, as well as antioxidative activities in all of the investigated extrudates in comparison to the pure-rice control sample. An increase in moisture content raised sesquiterpene lactones and minerals, while high screw speeds positively affected polyphenols content. The achieved results showed the important impact of the extrusion conditions on the investigated parameters and promoted chicory root as an attractive food ingredient in gluten-free snack products with high bioactive value.
Collapse
|
6
|
Sun J, Huang Y, Liu T, Jing H, Zhang F, Obadi M, Xu B. Evaluation of crossing-linking sites of egg white protein-polyphenol conjugates: Fabricated using a conventional and ultrasound-assisted free radical technique. Food Chem 2022; 386:132606. [PMID: 35366637 DOI: 10.1016/j.foodchem.2022.132606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
There has been strong interest in developing effective strategies to inhibit lipid oxidation in emulsified food products such as ω-3 fatty acids, carotenoids, or carotenoids. Dual-functional protein emulsifiers with antioxidant and emulsifying properties are in the spotlight. Our aim was to investigate the influence of caffeic acid (CF), chlorogenic acid (CA) with a C3-C6 structure, epigallocatechin gallate (EGCG), catechin (CT), and quercetin (QE) with a C6-C3-C6 structure on the cross-linking sites and structure of egg white protein (EWP)-polyphenol conjugates fabricated by the free radical method under conventional water bath (WB) and ultrasound assisted (US) conditions. Results of structural analysis and liquid chromatography-tandem mass spectrometry indicated that the structure of EWP-polyphenol conjugates and the cross-linking sites of the two are influenced by the polyphenol structure and the free radical system. Our study provides important information about the mechanism of research into proteins and polyphenols using the free radical method.
Collapse
Affiliation(s)
- Jun Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China.
| | - Yuqian Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Tengmei Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Hui Jing
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Feng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Das M, Rajan N, Biswas P, Banerjee R. A novel approach for resistant starch production from green banana flour using amylopullulanase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Khoza M, Kayitesi E, Dlamini BC. Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods 2021; 10:2894. [PMID: 34945445 PMCID: PMC8700615 DOI: 10.3390/foods10122894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the proximate composition, mineral content, functional properties, molecular structure, in vitro starch digestibility, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (DPPH, FRAP) of green banana flour (GBF) cultivars grown in South Africa. With proximate composition, Finger Rose and Pisang Awak had the highest protein (4.33 g/100 g) and fat (0.85 g/100 g) content, respectively. The highest ash content (3.50 g/100 g) occurred with both Grand Naine and FHIA-01 cultivars. Potassium and copper were the most abundant and least minerals, respectively. Pisang Awak cultivar had the highest water absorption capacity (67.11%), while Du Roi had the highest swelling power (0.83 g/g) at 90 °C. Scanning electron microscopy (SEM) images revealed that starch granules from all GBF cultivars were irregular in shape and they had dense surfaces with debris. All the GBF cultivars had similar diffraction patterns with prominent peaks from 15°-24° diffraction angles. The resistant starch (RS) and amylose content of the FHIA-01 cultivar indicates that the GBF has the potential to lower risks of type 2 diabetes and obesity. The highest TPC, TFC and antioxidant activity occurred with the Grande Naine cultivar. Based on their functional characteristics, the Grand Naine and FHIA-01 GBF cultivars could potentially be used as raw materials for bakery products as well as for the fortification of snacks.
Collapse
Affiliation(s)
- Minenhle Khoza
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
9
|
Effect of defatting and extruding treatment on the physicochemical and storage properties of quinoa (Chenopodium quinoa Wild) flour. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|