1
|
Yang H, Zhang Y, Chen W, Sun Y, Jiang Y, Chen J, Dong S. Metabolic profiles, bioactive compounds, and antioxidant capacity of Prunus sibirica L. seed kernels. Food Res Int 2025; 209:116205. [PMID: 40253127 DOI: 10.1016/j.foodres.2025.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
P. sibirica seed kernels are a valuable source of nutrition with various therapeutic properties. However, research on their active ingredients and medicinal properties remains limited. This study comprehensively evaluates the total phenolic and flavonoid contents, antioxidant capacity, and secondary metabolites in P. sibirica seed kernels from six Chinese provinces. The bioactive constituents and antioxidant capacity of P. sibirica seed kernels varied across different provenances. Using targeted metabolomics, 15 comparative data groups were obtained for P. sibirica seed kernel samples. In total, 1133 secondary metabolites were identified, including nine classes of phenolic acids, flavonoids, polyphenols, etc., with phenolic acids (270) and flavonoids (261) emerging as the major metabolites. In particular, P. sibirica seed kernels from Zhalantun City, Hulun Buir City, Inner Mongolia exhibit potential as promising food and medicine sources. The differentially accumulated metabolites showed that these compounds were primarily enriched in secondary metabolic pathways, including the biosynthesis and metabolism of isoflavones, flavonoids, and flavanols. High concentrations of flavonoids affected the antioxidant capacity of P. sibirica through free radical scavenging. Correlation analysis identified 26 metabolites significantly and positively correlated with antioxidant capacity (r ≥ 0.9, p < 0.0001). These results offer a theoretical basis for understanding metabolic mechanisms underlying the variable antioxidant capacity among P. sibirica seed kernels from different provinces. They also provide insights to guide the development and utilization of P. sibirica germplasm.
Collapse
Affiliation(s)
- Hanying Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuncheng Zhang
- Forestry and Grassland Bureau of Karaqin Left Wing Mongolian Autonomous County, Kazuo, Chaoyang 122300, China
| | - Wanxi Chen
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Ying Jiang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
2
|
Ribeiro da Silva Lima L, Barros Santos MC, P. Gomes PW, Fernández-Ochoa Á, Simões Larraz Ferreira M. Overview of the Metabolite Composition and Antioxidant Capacity of Seven Major and Minor Cereal Crops and Their Milling Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19197-19218. [PMID: 38803291 PMCID: PMC11363145 DOI: 10.1021/acs.jafc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.
Collapse
Affiliation(s)
- Luciana Ribeiro da Silva Lima
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| | - Millena C. Barros Santos
- Bordeaux
Metabolome-MetaboHUB, INRAE Bordeaux Nouvelle-Aquitaine,
UMR1332 BFP, Villenave
d’Ornon 33882, France
| | - Paulo Wender P. Gomes
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy &
Pharmaceutical Sciences, University of California
San Diego, 9500 Gilman
Drive, La Jolla, San Diego, California 92093-0751, United States
| | - Álvaro Fernández-Ochoa
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Mariana Simões Larraz Ferreira
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| |
Collapse
|
3
|
Kocakaplan ZB, Ozkan G, Kamiloglu S, Capanoglu E. Valorization of Pineapple (Ananas comosus) By-Products in Milk Coffee Beverage: Influence on Bioaccessibility of Phenolic Compounds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:300-307. [PMID: 38696134 PMCID: PMC11178570 DOI: 10.1007/s11130-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
The industrial processing of pineapples generates a substantial quantity of by-products, including shell, crown, and core. Bromelain, a proteolytic enzyme found naturally in pineapple, including its by-products, may positively influence the bioaccessibility of phenolics from milk coffee. Therefore, this study aimed to assess how the inclusion of extracts from pineapple by-products, namely shell, crown and core, could impact the bioaccessibility of coffee phenolics when combined with milk. After measuring the proteolytic activity of pineapple by-products, the standardized in vitro digestion model of INFOGEST was employed to evaluate changes in total phenolic content, total antioxidant capacity, and individual phenolic compounds in different coffee formulations. The results showed that incorporating extracts from the crown or core in both black and milk coffee increased the bioaccessibility of total phenolics (from 93 to 114% to 105-129%) and antioxidants (from 54 to 56% to 84-87%), while this effect was not observed for the shell. Moreover, adding core extracts also enhanced the bioaccessibility of caffeoylquinic acids and gallic acid in milk coffee (from 0.72 to 0.85% and 109-155%, respectively). Overall, the findings of this study highlight that bromelain from pineapple core may have a favorable effect on the recovery of phenolic compounds in milk coffee, possibly due to its ability to cleave proteins. These outcomes point out that industrial by-products can be transformed into economic value by being reintroduced into the production process through suitable treatment instead of disposal.
Collapse
Affiliation(s)
- Zeynep Buse Kocakaplan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, 16059, Türkiye
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Gorukle, Bursa, 16059, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
| |
Collapse
|
4
|
Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct 2024; 15:4292-4309. [PMID: 38526853 DOI: 10.1039/d3fo04078j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Fanglin Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Hui Zhou
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Tong Yu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Zhaolong Qin
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Qianwen Cao
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Peirong Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Oliveira JPS, Gomes S, Ladeira KC, Cameron LC, Macedo AF, Koblitz MGB. Recovery of flavor compounds from vanilla bagasse by hydrolysis and their identification through UPLC-MSE. Food Res Int 2023; 168:112739. [PMID: 37120198 DOI: 10.1016/j.foodres.2023.112739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Vanilla is a globally treasured commodity, and the consequences of its unstable value affect social, environmental, economic, and academic ambits. The extensive range of aroma molecules found in cured vanilla beans is crucial to the complexity of this natural condiment and knowledge about their recovery is of the essence. Many strategies aim on reproducing the chemical intricacies of vanilla flavor, such as biotransformation and de novo biosynthesis. Few studies, however, aim at the exhaustion of the cured pods, of which the bagasse, after the traditional ethanolic extraction, might still bear a highly valued flavor composition. An untargeted liquid chromatography coupled with mass spectrometry (LC-MSE) approach was applied to elucidate if sequential alkaline-acidic hydrolysis was effective in extracting flavor related molecules and chemical classes from the hydro-ethanolic fraction. Important vanilla flavor related compounds present in the hydro-ethanolic fraction were further extracted from the residue through alkaline hydrolysis, such as vanillin, vanillic acid, 3-methoxybenzaldehyde, 4-vinylphenol, heptanoic acid, and protocatechuic acid. Acid hydrolysis was effective on further extracting features from classes such as phenols, prenol lipids, and organooxygen compounds, though representative molecules remain unknown. Finally, sequential alkaline-acidic hydrolysis rendered natural vanilla's ethanolic extraction residues as an interesting supplier of its own products, which could be used as a food additive, and many other applications.
Collapse
|
7
|
Fotschki J, Ogrodowczyk AM, Wróblewska B, Juśkiewicz J. Side Streams of Vegetable Processing and Its Bioactive Compounds Support Microbiota, Intestine Milieu, and Immune System. Molecules 2023; 28:molecules28114340. [PMID: 37298819 DOI: 10.3390/molecules28114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The industry of vegetable processing generates large amounts of by-products, which often emerge seasonally and are susceptible to microbial degradation. Inadequate management of this biomass results in the loss of valuable compounds that are found in vegetable by-products that can be recovered. Considering the possibility of using waste, scientists are trying to reuse discarded biomass and residues to create a product of higher value than those processed. The by-products from the vegetable industry can provide an added source of fibre, essential oils, proteins, lipids, carbohydrates, and bioactive compounds, such as phenolics. Many of these compounds have bioactive properties, such as antioxidative, antimicrobial, and anti-inflammatory activity, which could be used, especially in the prevention or treatment of lifestyle diseases connected with the intestinal milieu, including dysbiosis and immune-mediated diseases resulting in inflammation. This review summarises the key aspects of the health-promoting value of by-products and their bioactive compounds derived from fresh or processed biomass and extracts. In this paper, the relevance of side streams as a source of beneficial compounds with the potential for promoting health is considered, particularly their impact on the microbiota, immune system, and gut milieu because all of these fields interact closely to affect host nutrition, prevent chronic inflammation, and provide resistance to some pathogens.
Collapse
Affiliation(s)
- Joanna Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Anna M Ogrodowczyk
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
8
|
de Souza Medina T, D’Almeida CTDS, do Nascimento TP, de Abreu JP, de Souza VR, Kalili DC, Teodoro AJ, Cameron LC, Koblitz MG, Ferreira MSL. Food Service Kitchen Scraps as a Source of Bioactive Phytochemicals: Disposal Survey, Optimized Extraction, Metabolomic Screening and Chemometric Evaluation. Metabolites 2023; 13:386. [PMID: 36984826 PMCID: PMC10057048 DOI: 10.3390/metabo13030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Untargeted metabolomics is a powerful tool with high resolution and the capability to characterize a wide range of bioactive natural products from fruit and vegetable by-products (FVB). Thus, this approach was applied in the study to evaluate the phenolic compounds (PC) by metabolomic screening in five FVB after optimizing their extraction. The total phenolic content and antioxidant activity analyses were able to select the best extractor (SM) and ultrasonication time (US) for each FVB; methanol was used as a control. Although ultrasonication yielded a lower number of PC identifications (84 PC), the US extract was the most efficient in total ionic abundance (+21% and +29% compared to the total PC and SM extracts, respectively). Ultrasonication also increased the phenolic acid (+38%) and flavonoid classes (+19%) extracted compared to SM, while the multivariate analyses showed the control as the most dissimilar sample. FVB extracted from the same parts of the vegetable/fruit showed similarities and papaya seed presented the most atypical profile. The application of the metabolomics approach increased the knowledge of the bioactive potential of the evaluated residues and possibilities of exploring and valorizing the generated extracts.
Collapse
Affiliation(s)
- Tatiana de Souza Medina
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Carolina Thomaz dos Santos D’Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Joel Pimentel de Abreu
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Vanessa Rosse de Souza
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Diego Calandrini Kalili
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Anderson Junger Teodoro
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Maria Gabriela Koblitz
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Laboratory of Biotechnology, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| |
Collapse
|
9
|
Antonelo FA, Rodrigues Soares M, Cruz LC, Pagnoncelli MG, Alves da Cunha MA, Bonatto SJR, Busso C, Júnior AW, Montanher PF. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Basit A, Ahmad S, Khan KUR, Aati HY, Sherif AE, Ovatlarnporn C, Khan S, Rao H, Arshad MA, Shahzad MN, Perveen S. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2023; 10:1077581. [PMID: 36688045 PMCID: PMC9853444 DOI: 10.3389/fchem.2022.1077581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cardamine amara L. (Brassicaceae) is an important edible plant with ethnomedicinal significance. This study aimed at evaluating the phytochemical composition, anti-inflammatory, antioxidant and cytotoxicity aspects of the hydro-alcoholic extract of C. amara (HAECA). Methods: The phytochemical composition was evaluated through total phenolic contents (TPC), total flavonoid contents (TFC) determination and UPLC-QTOF-MS profiling. Anti-inflammatory evaluation of HAECA was carried out through the carrageenan induced paw edema model. Four in vitro methods were applied in the antioxidant evaluation of HAECA. MTT assay was used to investigate the toxicity profile of the species against human normal liver cells (HL7702), human liver cancer cell lines (HepG2) and human breast cancer cell lines (MCF-7). Three major compounds (Gentisic acid, skullcapflavone and conidendrine) identified in UPLC-Q-TOF-MS analysis were selected for in silico study against cyclooxygenase (COX-I and COX-II). Results and Discussion: The findings revealed that HAECA is rich in TPC (39.32 ± 2.3 mg GAE/g DE) and TFC (17.26 ± 0.8 mg RE/g DE). A total of 21 secondary metabolites were tentatively identified in UPLC-Q-TOF-MS analysis. In the MTT cytotoxicity assay, the extract showed low toxicity against normal cell lines, while significant anticancer activity was observed against human liver and breast cancer cells. The carrageenan induced inflammation was inhibited by HAECA in a dose dependent manner and showed a marked alleviation in the levels of oxidative stress (catalase, SOD, GSH) and inflammatory markers (TNF-α, IL-1β). Similarly, HAECA showed maximum antioxidant activity through the Cupric reducing power antioxidant capacity (CUPRAC) assay (31.21 ± 0.3 mg TE/g DE). The in silico study revealed a significant molecular docking score of the three studied compounds against COX-I and COX-I. Conclusively the current study encourages the use of C. amara as a novel polyphenolic rich source with anti-inflammatory and antioxidant potential and warrants further investigations on its toxicity profile.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| |
Collapse
|
11
|
Núñez-Gómez V, González-Barrio R, Baenas N, Moreno DA, Periago MJ. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. Int J Mol Sci 2022; 23:ijms232113309. [PMID: 36362095 PMCID: PMC9656928 DOI: 10.3390/ijms232113309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The Brassica oleracea industry generates large amounts of by-products to which value could be added because of the characteristics of their composition. The aim was to extract different fibre fractions from broccoli stalks to obtain potential new added-value ingredients. Using an ethanol and water extraction procedure, two fibre-rich fractions (total fibre fraction, TFB, and insoluble fibre fraction, IFB) were obtained. These fractions were analysed to determine the nutritional, (poly)phenols and glucosinolates composition and physicochemical properties, comparing the results with those of freeze-dried broccoli stalks (DBS). Although TFB showed a higher content of total dietary fibre, IFB had the same content of insoluble dietary fibre as TFB (54%), better hydration properties, higher content of glucosinolates (100 mg/100 g d.w.) and (poly)phenols (74.7 mg/100 g d.w.). The prebiotic effect was evaluated in IFB and compared with DBS by in vitro fermentation with human faecal slurries. After 48 h, the short-chain fatty acid (SCFA) production was higher with IFB than with DBS because of the greater presence of both uronic acids, the main component of pectin, and (poly)phenols. These results reveal that novel fibre-rich ingredients—with antioxidant, technological and physiological effects—could be obtained from broccoli stalks by using green extraction methods.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Mª Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868-884-793
| |
Collapse
|
12
|
New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Moreira B, Pereira E, Finimundy TC, Pinela J, Calhelha RC, Carocho M, Stojković D, Sokovic M, Ferreira ICFR, Caleja C, Barros L. Pineapple by-products as a source of bioactive compounds with potential for industrial food application. Food Funct 2022; 13:9959-9972. [PMID: 36056706 DOI: 10.1039/d2fo00657j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pineapple is a tropical fruit consumed fresh or processed into various food products. However, the peel and crown of this fruit are not industrially exploited, thus generating tons of by-products that represent an economic and environmental concern. In order to promote the upcycling of these by-products, this work aimed to characterize the phenolic profile of its hydroethanolic extracts obtained from pineapple peel and crown leaves and to evaluate their in vitro bioactivity. The HPLC-DAD-ESI/MS analysis allowed the identification of 25 phenolic compounds, including phenolic acids and flavonoids. The antioxidant, cytotoxic, and antimicrobial activity assays highlighted the peel extract as the most promising and, therefore, it was incorporated into a traditional Portuguese pastry cake as a functional ingredient. The nutritional parameters of the developed food were not affected by the incorporation of the extract, but it promoted the antioxidant activity during its shelf-life. Overall, pineapple peel and crown appeared as promising by-products to be exploited by the food industry, which can be achieved through a circular economy approach.
Collapse
Affiliation(s)
- Bruna Moreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Dejan Stojković
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
14
|
Sehrawat R, Rathee P, Akkol EK, Khatkar S, Lather A, Redhu N, Khatkar A. Phenolic Acids - Versatile Natural Moiety With Numerous Biological Applications. Curr Top Med Chem 2022; 22:1472-1484. [PMID: 35747974 DOI: 10.2174/1568026622666220623114450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Medicinal uses of natural phenolic acids and its synthetic derivatives have been augmented in recent years. Phenolic acids are chemically defined secondary plant metabolitesand being moieties or leads are much versatile in nature with a widescope of biological activities which seek the attention of researchers across the worldto synthesize different derivatives of phenolic acids and screen them for their various biological properties.These compounds are of meticulous interest due to the properties they possess and their occurrence.Based on the convincing evidences reported in the literature, it is suggested that phenolic acids andtheir derivatives are promising molecules as a drug. OBJECTIVE The present review article aims to bring together the information on the biosynthesis, metabolism, and sources of phenolic acids and emphasize on the therapeutic potential of phenolic acid and its synthetic derivatives to comprehensively portray the current scenery for researchers interested in designing drugs for furthering this study. CONCLUSION Phenolic acids being moieties or lead are much versatile in nature as they possess a wide range of biological activities like antimicrobial, antioxidant, antiviral, antiulcer, anti-inflammatory, antidiabetic, anticancer and many more which offers researchers to explore more about these or many untapped benefits in medicinal field. The information mentioned in this article will be helpful to the forthcoming researchers working in this area. Phenolic acids have massive potential to be investigated for novel medicinal possibilities and for the development of new chemical moieties to treat different diseases of clinical importance.
Collapse
Affiliation(s)
| | - Priyanka Rathee
- SBMN Institute of Pharmaceutical Sciences and Research, B.M.U., Rohtak
| | - Esra Küpelli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak
| | - Amit Lather
- Vaish Institute of Pharmaceutical Education and Research, Rohtak
| | - Neelam Redhu
- Former Research Scholar, Department of Microbiology, M.D.University, Rohtak
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, M.D.University, Rohtak
| |
Collapse
|
15
|
Sarangi PK, Anand Singh T, Joykumar Singh N, Prasad Shadangi K, Srivastava RK, Singh AK, Chandel AK, Pareek N, Vivekanand V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 351:127085. [PMID: 35358673 DOI: 10.1016/j.biortech.2022.127085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Agricultural residues play a pivotal role in meeting the growing energy and bulk chemicals demand and food security of society. There is global concern about the utilization of fossil-based fuels and chemicals which create serious environmental problems. Biobased sustainable fuels can afford energy and fuels for future generations. Agro-industrial waste materials can act as the alternative way for generating bioenergy and biochemicals strengthening low carbon economy. Processing of pineapple generates about 60% of the weight of the original pineapple fruit in the form of peel, core, crown end, and pomace that can be converted into bioenergy sources like bioethanol, biobutanol, biohydrogen, and biomethane along with animal feed and vermicompost as described in this paper. This paper also explains about bioconversion process towards the production of various value-added products such as phenolic anti-oxidants, bromelain enzyme, phenolic flavour compounds, organic acids, and animal feed towards bioeconomy.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Thangjam Anand Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Ng Joykumar Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University) Visakhapatnam, 530 045 Andhra Pradesh, India
| | - Akhilesh K Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401 Bihar, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, São Paulo, Brazil
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017 Rajasthan, India.
| |
Collapse
|
16
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
17
|
Zhang Y, Cheng X, Wang Z, Tahir MH, Wang Z, Wang X, Wang C. Full recycling of high-value resources from cabbage waste by multi-stage utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149951. [PMID: 34509845 DOI: 10.1016/j.scitotenv.2021.149951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Cabbage waste (CW) was recycled for generating some potential high-value products by a multi-stage treatment technology. A novel multi-stage utilization process was successfully proposed which consisted of low-temperature extraction, medium-temperature thermolysis, and high-temperature activation. Plant extracts that contain fatty acids, alcohol, furan, and esters were first extracted from raw cabbage waste by ethanol at 70 °C. Pyrolytic oil was obtained by cabbage waste pyrolysis at different medium temperature conditions. The produced carbon residue was further activated at high temperature for environmental purification such as VOCs removal. The performance of this process was characterized by N2 isothermal adsorption, Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG) and gas chromatography-mass spectrometry (GC-MS). Experimental results showed that the optimum temperatures for extraction, pyrolysis, and activation were 70 °C, 520 °C and 700 °C, respectively. Phenolic-rich pyrolysis solution with 50% phenolic contents could be obtained with the potential application of botanical pesticide. The produced biochar had a BET surface area of as high as 891.12 m2/g. The yields of biochar, pyrolytic liquid, and pyrolytic gas were 43.86%, 17.47%, 38.67%, respectively, and the process energy efficiency was over 42.7%. Applicability and feasibility of this process were also discussed in the aspects of energy quality balance, economy, and environment. The proposed multi-stage thermal-chemical process could be used as a full recycling method for biomass waste.
Collapse
Affiliation(s)
- Yiteng Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Xingxing Cheng
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China.
| | - Ziliang Wang
- Innovation Centre, BC Research Inc., 12920 Mitchell Rd, Richmond, BC V6V 1M8, Canada
| | - Mudassir Hussain Tahir
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Zhiqiang Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China
| | - Xuetao Wang
- School of College of vehicle and Traffic Engineering, HeNan University of Science and technology, Luoyang 471003, HeNan, China
| | - Chao Wang
- Yankuang Technology Co., Ltd., Shandong Energy Group Co., Ltd., Jinan 250101, China
| |
Collapse
|
18
|
Wang M, Yang C, François JM, Wan X, Deng Q, Feng D, Deng S, Chen S, Huang F, Chen W, Gong Y. A Two-step Strategy for High-Value-Added Utilization of Rapeseed Meal by Concurrent Improvement of Phenolic Extraction and Protein Conversion for Microbial Iturin A Production. Front Bioeng Biotechnol 2021; 9:735714. [PMID: 34869254 PMCID: PMC8635924 DOI: 10.3389/fbioe.2021.735714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Rapeseed meal (RSM) is a major by-product of oil extraction from rapeseed, consists mainly of proteins and phenolic compounds. The use of RSM as protein feedstock for microbial fermentation is always hampered by phenolic compounds, which have antioxidant property with health-promoting benefits but inhibit bacterial growth. However, there is still not any good process that simultaneously improve extraction efficiency of phenolic compounds with conversion efficiency of protein residue into microbial production. Here we established a two-step strategy including fungal pretreatment followed by extraction of phenolic compounds. This could not only increase extraction efficiency and antioxidant property of phenolic compounds by about 2-fold, but also improve conversion efficiency of protein residue into iturin A production by Bacillus amyloliquefaciens CX-20 by about 33%. The antioxidant and antibacterial activities of phenolic extracts were influenced by both total phenolic content and profile, while microbial feedstock value of residue was greatly improved because protein content was increased by ∼5% and phenolic content was decreased by ∼60%. Moreover, this two-step process resulted in isolating more proteins from RSM, bringing iturin A production to 1.95 g/L. In conclusion, high-value-added and graded utilization of phenolic extract and protein residue from RSM with zero waste is realized by a two-step strategy, which combines both benefits of fungal pretreatment and phenolic extraction procedures.
Collapse
Affiliation(s)
- Meng Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | | | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Danyang Feng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyu Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| |
Collapse
|
19
|
Tang YC, Liu YJ, He GR, Cao YW, Bi MM, Song M, Yang PP, Xu LF, Ming J. Comprehensive Analysis of Secondary Metabolites in the Extracts from Different Lily Bulbs and Their Antioxidant Ability. Antioxidants (Basel) 2021; 10:antiox10101634. [PMID: 34679768 PMCID: PMC8533310 DOI: 10.3390/antiox10101634] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
The genus Lilium contains more than 100 wild species and numerous hybrid varieties. Some species of them have been used as medicine and food since ancient times. However, the research on the active components and the medical properties of lilies has only focused on a few species. In this study, the total phenolic acid content (TPC), total flavonoid content (TFC), and antioxidant capacity of 22 representative lilies were systematically investigated. The results showed that the TPC, TFC and antioxidant activity were highly variable among different lilies, but they were significantly positively correlated. Hierarchical cluster analysis indicated that L. henryi and L. regale were arranged in one group characterized by the highest TPC, TFC and antioxidant capacity, followed by Oriental hybrids and Trumpet and Oriental hybrids. The traditional edible and medicinal lilies were clustered in low TPC, TFC and antioxidant capacity group. A total of 577 secondary metabolites, including 201 flavonoids, 153 phenolic acids, were identified in the five species with great differences in antioxidant capacity by extensive targeted metabonomics. Differentially accumulated metabolites (DAMs) analysis reviewed that the DAMs were mainly enriched in secondary metabolic pathways such as isoflavonoid, folate, flavonoid, flavone, flavonol, phenylpropanoid, isoquinoline alkaloid biosynthesis, nicotinate and nicotinamide metabolism and so on. Correlation analysis identified that 64 metabolites were significantly positively correlated with antioxidant capacity (r ≥ 0.9 and p < 0.0001). These results suggested that the genus Lilium has great biodiversity in bioactive components. The data obtained greatly expand our knowledge of the bioactive constituents of Lilium spp. Additionally, it also highlights the potential application of Lilium plants as antioxidants, functional ingredients, cosmetic products and nutraceuticals.
Collapse
Affiliation(s)
- Yu-Chao Tang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Yi-Jie Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ren He
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Yu-Wei Cao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Meng-Meng Bi
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Meng Song
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Pan-Pan Yang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Lei-Feng Xu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
| | - Jun Ming
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.T.); (Y.-J.L.); (G.-R.H.); (Y.-W.C.); (M.-M.B.); (M.S.); (P.-P.Y.); (L.-F.X.)
- Correspondence:
| |
Collapse
|
20
|
Namir M, Rabie MA, Rabie NA. Physicochemical, pasting, and sensory characteristics of antioxidant dietary fiber gluten-free donut made from cantaloupe by-products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01106-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Research of qualitative indicators of butter cookies using protein-mineral supplements. EUREKA: LIFE SCIENCES 2021. [DOI: 10.21303/2504-5695.2021.001968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The results of researches of influence of protein-mineral supplements on quality indicators of butter cookies are presented. It is described, that the supplements are used as a multifunctional ingredient, which on the one hand enriches the finished product with digestible calcium compounds, on the other - performs a number of technological tasks and improves the consumer characteristics of butter cookies.
The purpose of the study was to determine the effect of protein-mineral supplements on a number of physicochemical, consumer characteristics and safety indicators of butter cookies.
The study of the following physicochemical parameters of the quality of butter cookies was conducted: mass fraction of moisture, wettability, alkalinity, calcium content, including total and protein-bound.
It is established, that with the content of supplements up to 5.0% of the flour weight, all the above indicators meet the established requirements. With the content of suppements at the level of 6.0… 7.0%, there are limit values of such an indicator as wettability, which is undesirable to ensure the appropriate porous structure of the product. Based on the obtained data, it can be stated, that 5.0% of the use of supplements is the limit rational content in the composition of butter cookies.
The organoleptic analysis proved the high characteristics of the developed products in comparison with traditional ones. In products with supplements, there was an improvement in the structure of the product in the cut and its color. This is ensured by the stabilization of the emulsion by the supplement during the manufacture of products and by peculiarities of its chemical composition.
Studies of safety indicators allowed to establish less intensive dynamics of accumulation of primary oxidation products (peroxides) in samples of flour and butter products with supplements in comparison with control. The best microbiological stability of products with supplements is also proved. Due to the bacteriostatic effect of the supplements, less intensive accumulation of microflora during storage was achieved.
On the basis of the conducted researches the expediency of using up to 5.0% of protein-mineral supplements in the composition of flour and butter products for enrichment of finished products with digestible calcium compounds, improvement of organoleptic characteristics and safety indicators have been established.
Collapse
|
22
|
Yue T, Xing Y, Xu Q, Yang S, Xu L, Wang X, Yang P. Physical and chemical properties of purple cabbage as affected by drying conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tianyi Yue
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Yage Xing
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Qinglian Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Shuang Yang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Lin Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaomin Wang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Ping Yang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
23
|
Zhang Q, Liang D, Guo J, Guo R, Bi Y. Inclusion Complex of Sea Buckthorn Fruit Oil with β‐Cyclodextrin: Preparation Characterization and Antioxidant Activity. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Zhang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Dongyi Liang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Juan Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Rui‐Xue Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yongguang Bi
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| |
Collapse
|
24
|
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles. Curr Cancer Drug Targets 2021; 21:689-701. [PMID: 34036921 DOI: 10.2174/1568009621666210525152802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of cancer has led to the expansion of traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore anti-cancer effects of these natural compounds and to promote effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds including curcumin, silibinin, quercetin, and resveratrol have been the subject of intense interest for anti-cancer applications due to their ability in regulating apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs, and their effects on improving the delivery of chemotherapy agents to cancer cells.
Collapse
Affiliation(s)
- Keyvan Khazei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology Faculty of Medicine, Istanbul Aydin University, Istanbul. Turkey
| | - Zeynep Turk
- Center for Applied and Theoretical Research on Higher Education, İstanbul Aydın University, Istanbul. Turkey
| | - Nosratollah Zarghami
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|