1
|
Gabsi M, Ferkous H, Delimi A, Boublia A, Boulechfar C, Kahlouche A, Darwish AS, Lemaoui T, Benguerba Y. The curious case of polyphenols as green corrosion inhibitors: a review on their extraction, design, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59081-59105. [PMID: 37017845 DOI: 10.1007/s11356-023-26753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Over the past century, a substantial amount of research focused on developing corrosion inhibitors, with a special focus on green "plant-based" corrosion inhibitors. Among the various types of inhibitors, polyphenols emerged as a promising candidate due to their advantageous characteristics, which include being inexpensive, biodegradable, renewable, and, most importantly, safe for both the environment and humans. Their performance as sustainable corrosion inhibitors have encouraged many electrochemical experiments as well as theoretical, mechanistic, and computational studies, with many papers reporting inhibition efficiencies of over 85%. In this review, the majority of literature contributions on the inhibition of various types of polyphenols, their natural extraction techniques, and their applications as "greener" corrosion inhibitors for metals are thoroughly described and discussed with a focus on their preparation, inhibition mechanism, and performance. Based on the reviewed literature, it can be concluded that polyphenols have a very promising potential to be used as both green and powerful corrosion inhibitors; therefore, further investigations, experimental or computational, are still required to realize higher inhibition efficiencies reaching up to ≈ 100%.
Collapse
Affiliation(s)
- Meriem Gabsi
- Laboratoire de Génie mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Skikda, Algeria
- Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Hana Ferkous
- Laboratoire de Génie mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Skikda, Algeria
- Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Amel Delimi
- Laboratoire de Génie mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Skikda, Algeria
- Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Chérifa Boulechfar
- Laboratoire de Génie mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Skikda, Algeria
- Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Abdesalem Kahlouche
- Laboratoire de Génie mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Skikda, Algeria
- CRTI Research Centre in Industrial Technologies-CRTI P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Ahmad S Darwish
- Department of Chemical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates, UAE
| | - Tarek Lemaoui
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria.
| |
Collapse
|
2
|
Zhou X, Wu Y, Wang Y, Zhou X, Chen X, Xi J. An efficient approach for the extraction of anthocyanins from Lycium ruthenicum using semi-continuous liquid phase pulsed electrical discharge system. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Keerthiga G, Sridhar A. Batch extraction kinetics and total phenolic content estimation of Syzygium Cumini.L bark. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2046512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- G. Keerthiga
- Department of Chemical Engineering, SRM Institute of Science & Technology, Kattankulathur, India
| | - Adithya Sridhar
- Department of Chemical Engineering, SRM Institute of Science & Technology, Kattankulathur, India
| |
Collapse
|
4
|
Xiang B, Zhou X, Qin D, Li C, Xi J. Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chem 2022; 371:131192. [PMID: 34592627 DOI: 10.1016/j.foodchem.2021.131192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
The extraction of bioactive compounds from plant materials has attracted much attention due to their potential therapeutic effects. This article reviews the basic principles, characteristics, and recent applications of infrared assisted extraction (IAE) of bioactive compounds from plant materials. The advantages and disadvantages of IAE are considered, and operation mode and technological improvements, processes, solvents used and other future developments are identified. The review indicated that IAE was a simple, rapid, and cost-effective technique with the capacity for industrial scale application. Future research should focus on energy consumption reduction, green chemistry extraction processes, simplified operation steps, intelligent extraction process, and the establishment of kinetic and thermodynamic models. This article provides a comprehensive understanding of the principles and applications of IAE for the preparation of bioactive compounds, which will be of benefit to researchers and users of the technology.
Collapse
Affiliation(s)
- Bing Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Danyang Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenyue Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|