1
|
Dagni A, Jarjini S, Sakoui S, Elmakssoudi A, Elemer S, Vodnar DC, Szabo K, Fetea F, Pop OL, Suharoschi R, Soukri A, El Khalfi B. Innovative encapsulation of Dysphania ambrosioides essential oil and α-terpinene with gum arabic and inulin: Enhancing antibacterial activity, stability, and bioavailability. Int J Biol Macromol 2025; 303:140643. [PMID: 39909248 DOI: 10.1016/j.ijbiomac.2025.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Dysphania ambrosioides essential oil (EO) possesses significant antibacterial and antioxidant properties. However, its application as a food preservation agent is limited due to high volatility and instability. Given the industrial relevance of this EO, developing new products that incorporate microencapsulated D. ambrosioides EO is recommended. This study addresses these challenges by encapsulating the EO using inulin and gum arabic (IN/GA) biopolymers, known for their biocompatibility and biodegradability. We systematically evaluated the encapsulation efficiency and structural properties of the resulting microcapsules. Advanced characterization techniques, including FT-IR, SEM, and EDX, were used to analyze the chemical interactions and morphological characteristics of the microcapsules. The thermal stability of the microcapsules was assessed using TGA, while their stability and bioaccessibility were evaluated under simulated in vitro digestion conditions. The formulation (C1) used in this study demonstrated a high encapsulation efficiency (88 %). The IN/GA formulations successfully microencapsulated EO and α-terpinene, producing microcapsules with high stability (>80 %) and bioaccessibility (>40 %). These microcapsules showed controlled release during digestion and exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. These findings suggest that inulin and gum arabic are effective macromolecules for stabilizing this EO, offering valuable potential applications in the food industry.
Collapse
Affiliation(s)
- Amal Dagni
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Soukayna Jarjini
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P, 5366 Casablanca, Morocco
| | - Simon Elemer
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, Cluj-Napoca 400372, Romania
| | - Florinela Fetea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Mănăştur Str., No.3-5, Cluj-Napoca 400372, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco.
| |
Collapse
|
2
|
Rout S, Dash P, Panda PK, Yang PC, Srivastav PP. Interaction of dairy and plant proteins for improving the emulsifying and gelation properties in food matrices: a review. Food Sci Biotechnol 2024; 33:3199-3212. [PMID: 39328217 PMCID: PMC11422335 DOI: 10.1007/s10068-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024] Open
Abstract
A variety of variables influence food texture, two of which are gelation and emulsification. Protein interactions have an important role in influencing gelation and emulsifying properties. The utilization of plant proteins in the development of food systems is a prominent subject within the current protein transition paradigm. Plant proteins diminish gel strength compared to dairy proteins. Protein providers prefer to create their own networks rather than rely on tight ties. It may be feasible to resolve these challenges if the interactions between plant and dairy proteins are known at all sizes, from molecular to macroscopic. Therefore, the proteins and dairy proteins are the main emphasis of this review. The role of these proteins in interacting with food matrices is also discussed. Additionally, this data gives information on worldwide research trends. Finally, a glimpse into the future was discussed.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608 Taiwan
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Po-Chih Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
3
|
Cao S, Liu X, Zheng Z, Yan Z, Zhang T, Liu J, Yu T. Effects of Ultrasound-Assisted Soy Lecithin Addition on Rehydration Behavior and Physical Properties of Egg White Protein Powder. Foods 2024; 13:2252. [PMID: 39063336 PMCID: PMC11276175 DOI: 10.3390/foods13142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of ultrasound-assisted soybean lecithin (SL) on the rehydration behavior and physical properties of egg white protein powder (EWPP) and its ability to enhance the efficacy of EWPP instant solubility. The results of rehydration, including wettability and dispersibility, indicated that ultrasound (200 W)-assisted SL (5 g/L) addition had the shortest wetting time and dispersion time, which were 307.14 ± 7.00 s and 20.95 ± 2.27 s, respectively. In terms of powder properties, the EWPP with added SL had lower lightness, moisture content and bulk density. In addition, the increase in average particle size, net negative charge, free sulfhydryl group content and surface hydrophobicity indicated that ultrasound treatment facilitated the protein structures unfolding and promoted the formation of SL-EWP complexes. Overall, our study provided a new perspective for the food industry regarding using ultrasound technology to produce instant EWPP with higher biological activity and more complete nutritional value.
Collapse
Affiliation(s)
- Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (S.C.); (X.L.); (Z.Z.); (Z.Y.); (T.Z.); (J.L.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
4
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
5
|
Nahimana P, Bouaicha I, Chèné C, Karamoko G, Missbah El Idrissi M, Bakhy K, Abdelmoumen H, Blecker C, Karoui R. Physico-chemical, functional, and structural properties of un-defatted, cold and hot defatted yellow lupin protein isolates. Food Chem 2024; 437:137871. [PMID: 37922794 DOI: 10.1016/j.foodchem.2023.137871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
This study investigates the structure, physico-chemical and functional properties of yellow lupin isolate protein (YLPI) obtained by different processes (conventional wet and purely aqueous fractionation) from un-defatted (YLPIU), and hot (YLPIHD) and cold (YLPICD) defatted flour. The defatting process modified the physical, structural and functional characteristics of lupin protein isolates. Indeed, a decrease of α-helix, free sulfhydryl groups amount and an increase of disulfide bond levels were observed for defatted samples, improving their emulsifying stability. The defatting process exposes the hydrophobic groups present within the YLPI, which increases total sulfhydryl content and protein surface hydrophobicity. Hot and cold defatting induced a decrease in turbidity, water-holding capacity, oil adsorption capacity, tapped and poured bulk densities. In addition, the defatting process changed the particle size of protein isolates that induced changes in their viscosity. Tryptophan spectra and protein surface hydrophobicity indicated that YLPICD and YLPIHD underwent structural conformational change during the defatting process.
Collapse
Affiliation(s)
- Paterne Nahimana
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Inès Bouaicha
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christine Chèné
- Adrianor, 1 rue Jacquart, F-62217 Tilloy Les Mofflaines, France
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Mustapha Missbah El Idrissi
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Khadija Bakhy
- National Institute of Agricultural Research (INRA), Research Unit on Aromatic and Medicinal Plant, BP 6570, Rabat-Instituts, Rabat 10101, Morocco
| | - Hanaa Abdelmoumen
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| |
Collapse
|
6
|
Yan M, Wang Y, Wang C, Feng S, Zhang T. Whey protein isolate-resveratrol complex as a radical scavenging foaming ingredient with increased ultraviolet stability. Food Chem 2024; 434:137519. [PMID: 37748290 DOI: 10.1016/j.foodchem.2023.137519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Functional foaming food ingredients play a vital role in preparing healthcare foods, however, the weak foamability and low photostability of ingredients severely limit their further development. Herein, whey protein isolate-resveratrol complexes (WPI-RES) were fabricated to address these challenges. Multi-spectral analysis and molecular simulation results revealed the key driving forces of hydrogen bonding and hydrophobic interactions to promote the formation of WPI-RES complexes, leading to the enhanced foamability and emulsifying properties of WPI after binding with RES. Importantly, the robust radical scavenging activity of RES within WPI was maintained under UV light irradiation compared to that of free RES as identified by DPPH assay, which was presumably due to inhibited photoisomerization of RES after binding to WPI. This work provides a promising foaming ingredient with increased ultraviolet stability and radical scavenging activity, paves the way to develop stable health-promoting foaming food products.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Cuina Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Sitong Feng
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
7
|
Henao-Ardila A, Quintanilla-Carvajal MX, Santagapita PR, Caldas-Abril M, Bonilla-Bravo V, Moreno FL. Effect of wall material on lipophilic functional compounds of high oleic palm oil emulsions encapsulated by Refractance Window drying. Heliyon 2023; 9:e21499. [PMID: 38027781 PMCID: PMC10651459 DOI: 10.1016/j.heliyon.2023.e21499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®, a commercial octenyl succinic anhydride modified starch (OSA-MS)) on the concentration of provitamin A, vitamin E and oleic acid, and the physical properties of high oleic palm oil emulsions encapsulated by Refractance Window drying technology. Wall material composition significantly affected (p < 0.05) all response variables, and R2 values were above 0.75 for all responses. Phytonutrient preservation showed its highest at an OSA-MS: WP concentration ratio of 1: 3. Optimal results were achieved (minimum moisture content, water activity and hygroscopicity, and maximum encapsulation efficiency and phytonutrient preservation) at an OSA-MS concentration of 8.13 % and WP concentration of 91.87 %. Flakes were obtained as a solid structure that protects oil's phytonutrients with 94 %, 75 % and 87 % of preservation of oleic acid, vitamin E and carotenoids, respectively. It shows that the wall material combination and encapsulation technique are suitable for obtaining lipophilic functional compounds.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Patricio Román Santagapita
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica & CIHIDECAR (Centro de Investigaciones en Hidratos de Carbono, CONICET-UBA), Buenos Aires, Argentina
| | - Miguel Caldas-Abril
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Valentina Bonilla-Bravo
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
8
|
Guo L, Fan L, Zhou Y, Li J. Constitution and reconstitution of microcapsules with high diacylglycerol oil loading capacity based on whey protein isolate / octenyl succinic anhydride starch/ inulin matrix. Int J Biol Macromol 2023; 242:124667. [PMID: 37121416 DOI: 10.1016/j.ijbiomac.2023.124667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The aim of this study was to constitute microcapsule systems with high oil loading capacity by octenyl succinic anhydride (OSA) starch, whey protein isolate (WPI) and inulin (IN) substrates to provide a new method for encapsulating diacylglycerol oil. Specifically, this study characterizes the physicochemical properties and reconstitution capacity of highly oil loading diacylglycerol microcapsules by comparing the wall encapsulation capacity of the binary wall system OSA-IN, WPI-IN and the ternary wall system WPI-OSA (1:9, 5:5, 9:1)-IN for diacylglycerol oil. It was found that WPI-OSA (5:5)-IN significantly improved the water solubility of microcapsules (86.11 %) compared to OSA-IN microcapsules, and the addition of WPI made the surface of microcapsules smoother and increased the thermal stability and solubility of microcapsules; the addition of OSA enhanced the wettability of microcapsules compared to WPI-IN. In addition, WPI-OSA (5:5)-IN microcapsules have the highest encapsulation efficiency (96.03 %), high emulsion stability after reconstitution, and the smallest droplet size (212.83 nm) after 28 d. Therefore, the WPI-OSA-IN composite system is suitable for the production of highly oil-loaded microencapsulated systems with excellent reconstitution ability to expand the application of diacylglycerol oil.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Application of Whey Protein-Based Emulsion Coating Treatment in Fresh-Cut Apple Preservation. Foods 2023; 12:foods12061140. [PMID: 36981067 PMCID: PMC10048030 DOI: 10.3390/foods12061140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Fresh-cut fruit requires an edible and water-resistant coating to remain fresh. This article investigated the effects of transglutaminase (TGase) and sunflower oil on the water-resistant characteristics, mechanical properties, and microstructure of a whey protein-based film. The whey protein-based emulsion coating’s preservation effect on fresh-cut apples was confirmed. According to the findings, sunflower oil (added at 1.5% w/w) could interact with β-lactoglobulin, α-lactoglobulin dimer, and β-lactoglobulin dimer to form emulsion droplets that are evenly dispersed throughout the protein film. This effect, combined with the covalent cross-linking of TGase, significantly improves the films’ microstructure, mechanical properties, and water resistance. However, too much and unevenly distributed sunflower oil (add 3% w/w) partially prevented the covalent cross-linking of TGase, reducing the elongation at the break of the composite film. In the fresh-cut apple storage experiment, the whey protein-based emulsion coating treatment significantly reduced the weight loss rate and browning index of fresh-cut apples by 26.55% and 46.39%, respectively. This was accomplished by the coating treatment significantly inhibiting the respiration rate increase, PPO and CAT activity enhancement, H2O2 production, and MDA accumulation. This research provides practical, technical, and theoretical guidance for the preservation of fresh-cut fruit.
Collapse
|
10
|
Premjit Y, Mitra J. Synthesis, characterization, and in vitro digestion of electrosprayed and freeze-dried probiotics encapsulated in soy protein isolate-sunflower oil emulsions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Gökkaya Erdem B, Kaya S. Edible film fabrication modified by freeze drying from whey protein isolate and sunflower oil: Functional property evaluation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Volić M, Pećinar I, Micić D, Đorđević V, Pešić R, Nedović V, Obradović N. Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chem 2022; 386:132749. [PMID: 35339086 DOI: 10.1016/j.foodchem.2022.132749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Innovative coating powders, based on whey protein concentrate (10-15 wt%) as native (WPC) or denatured protein (d-WPC), solely or in combination with alginate (0.75 wt%, AL), containing thyme essential oil, were produced using the freeze-drying technique. The impact of individual components (protein, alginate and oil) as well as the effect of heat-induced protein denaturation, was resolved regarding physicochemical, thermal and morphological properties of powders. High product yield (∼100%), particle size (223-257 nm), low moisture content (0.10-0.13%) and zeta potential (-19 to -25.6 mV) were determined for all samples. Strong antimicrobial activity of thyme oil nanocarriers against foodborne pathogens was demonstrated. Thermogravimetric analysis (TGA) indicated enhanced thermal stability of encapsulated oil. The most specific bands of structural compounds were identified in Raman spectra of the tested formulations, but principal component analysis (PCA) on recorded spectra was necessary to show the differences between carriers of different wall materials.
Collapse
Affiliation(s)
- Mina Volić
- University of Belgrade, Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia.
| | - Ilinka Pećinar
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade 11080, Serbia
| | - Darko Micić
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 41, Belgrade 11000, Serbia
| | - Verica Đorđević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| | - Radojica Pešić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| | - Viktor Nedović
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade 11080, Serbia
| | - Nataša Obradović
- University of Belgrade, Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| |
Collapse
|
13
|
Ramírez-Rodríguez LC, Quintanilla-Carvajal MX, Mendoza-Castillo DI, Bonilla-Petriciolet A, Jiménez-Junca C. Preparation and Characterization of an Electrospun Whey Protein/Polycaprolactone Nanofiber Membrane for Chromium Removal from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2744. [PMID: 36014608 PMCID: PMC9413122 DOI: 10.3390/nano12162744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Chromium pollution represents a worldwide concern due to its high toxicity and bioaccumulation in organisms and ecosystems. An interesting material to remove metal ions from water is a whey-protein-based material elaborated by electrospinning, which is an emerging method to produce adsorbent membranes with diverse applications. The aim of this study was to prepare an adsorbent membrane of whey protein isolate (WPI) and polycaprolactone (PCL) by electrospinning to remove chromium ions from water. The adsorbent membrane was synthesized by a central composed design denaturing WPI using 2-Mercaptoethanol and mixing it with PCL to produce electrospun nanofibers. The adsorbent membrane was characterized by denaturation, Scanning Electron Microscope, Fourier-Transform Infrared Spectroscopy, Contact Angle, Thermogravimetric Analysis, and X-ray Photoelectron Spectrometry. The adsorption properties of this membrane were assessed in the removal of chromium. The removal performance of the membrane was enhanced by an increase in temperature showing an endothermic adsorption process. The adsorption process of chromium ions onto the nanofiber membrane followed the Sips adsorption isotherm, while the adsorption kinetics followed a pseudo-second kinetics where the maximum adsorption capacity was 31.0 mg/g at 30 °C and pH 2. This work provides a novel method to fabricate a hybrid membrane with amyloid-type fibrils of WPI and PCL, which is a promising adsorbent to remove heavy metal ions from water.
Collapse
Affiliation(s)
- Laura Cristina Ramírez-Rodríguez
- Maestría en Diseño y Gestión de Procesos Facultad de Ingeniería, Campus Universitario Puente del Común, Universidad de la Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| | - María Ximena Quintanilla-Carvajal
- Agroindustrial Processes Research Group, Campus Universitario Puente del Común, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| | - Didilia Ileana Mendoza-Castillo
- CONACYT, Ciudad de México 03940, Mexico
- Departamento de Ingeniería Química, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Adrián Bonilla-Petriciolet
- Departamento de Ingeniería Química, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Carlos Jiménez-Junca
- Bioprospecting Research Group, Campus Universitario Puente del Común, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| |
Collapse
|
14
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|
15
|
Lyu X, Wang Y, Gao S, Wang X, Cao W, Cespedes-Acuña CL. Sea buckthorn leaf extract on the stability and antioxidant activity of microencapsulated sea buckthorn oil. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Amara AAAF. Natural Polymer Types and Applications. BIOMOLECULES FROM NATURAL SOURCES 2022:31-81. [DOI: 10.1002/9781119769620.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Effect of Trehalose on the Physicochemical Properties of Freeze-Dried Powder of Royal Jelly of Northeastern Black Bee. COATINGS 2022. [DOI: 10.3390/coatings12020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Trehalose is known for its effect of improving the stability of freeze-dried foods. In this work, vacuum freeze-drying (VFD) technology was employed to prepare northeast black bee royal jelly into lyophilized powder and a novel method mixing trehalose into royal jelly is successfully developed to enhance the free radical scavenging ability and the nutrition stability of royal jelly lyophilized powder. The effects of different trehalose content (0, 0.1, 0.3, 0.5, 0.7 and 0.9 wt.%) on the physicochemical properties of lyophilized royal jelly powder were studied. With systematic analysis, it was found that the incorporation of suitable trehalose content in lyophilized royal jelly powder can reduce the loss of the protein, total sugar, total flavone content during the VFD process and enhance the total phenolic antioxidant capacity, solubility, angle of repose, and bulk density of the royal jelly powder. Finally, lyophilized royal jelly with 0.5 wt.% trehalose is selected as the suitable addition content which exhibits the best radical scavenging ability as well as the lowest hygroscopicity. From the perspective of sensory evaluation, all royal jelly lyophilized powders with trehalose are acceptable.
Collapse
|
18
|
A Comprehensive Study on Sorption, Water Barrier, and Physicochemical Properties of Some Protein- and Carbohydrate-Based Edible Films. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Erdem BG, Kaya S. Characterization and application of novel composite films based on soy protein isolate and sunflower oil produced using freeze drying method. Food Chem 2021; 366:130709. [PMID: 34343951 DOI: 10.1016/j.foodchem.2021.130709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 02/04/2023]
Abstract
Biocomposite films based on soy protein isolate (SPI) and sunflower oil (SO) were fabricated using freeze drying (FDM) as an innovative approach to formulate a fairly easy-to-apply way, moreover, results were compared with the classic film production method (CM). In FDM, SPI edible film solutions were prepared and dried using freeze drying, and then reconstituted to produce the films. The aim was to specify the effect of both using FDM and concentration of SO (0.05%, 0.10% and 0.15% (w/v)) on the characterization of SPI films via thermal, barrier and morphological analyzes. Reinforced mechanical and good barrier properties were achieved with FDM. By increasing SO content, an improvement of hydrophobic property of the films, a decrease in the swelling values, and a reduction in permeability was observed. The cakes which were wrapped with FDM films showed better textural results than either uncoated cake or the cakes wrapped with CM films.
Collapse
Affiliation(s)
- Burcu Gökkaya Erdem
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey.
| | - Sevim Kaya
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|