1
|
Meng D, Zhao D, Zhao Z, Wang X, Wu Y, Li Y, Lv Z, Zhong Q. Revealing key aroma compounds and the potential metabolic pathways in sea buckthorn berries. Food Chem 2025; 476:143430. [PMID: 39986073 DOI: 10.1016/j.foodchem.2025.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
To clarify the aromatic compounds of sea buckthorn and their formation pathways, the key aroma compounds in Hippophae rhamnoides subsp. sinensis were determined first. There were 21 compounds identified as the key aroma components (e.g. ethyl isovalerate, ethyl caproate, ethyl octanoate, 1-hexanol, 1-nonanol, phenylethyl alcohol, nonanal, 6-methyl-5-heptene-2-one) of sea buckthorn, which were mainly composed of esters and alcohols. There were obvious differences in the composition of compounds among Hippophae rhamnoides subsp. sinensis (SI, SS) and Hippophae rhamnoides subsp. thibetana (TS). Esters were the main volatiles of Hippophae rhamnoides subsp. sinensis (SI, SS), while alcohols were the main volatiles of Hippophae rhamnoides subsp. thibetana (TS), which resulted in a lack of overall aromas in TS and a strong fruity and winy odor in SI and SS. The aroma of sea buckthorn could be reproduced well by analyzing key aroma components. Additionally, oleic acid, linoleic acid, leucine, phenylalanine, lycopene, and other compounds generated key aroma compounds by fatty acid oxidation pathway, amino acid degradation pathway, mevalonic acid pathway, methylerythritol phosphate pathway, carotenoid degradation pathway. Therefore, the key aroma compounds in sea buckthorn berries and their metabolic pathways were studied in the paper, which provided the research basis for genetic breeding and fine processing of sea buckthorn.
Collapse
Affiliation(s)
- Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dongbo Zhao
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou, Gansu 730060, China
| | - Zhichao Zhao
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Gansu, Lanzhou 730060, China
| | - Xiaoxue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yonghui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Qilin Zhong
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Gansu, Lanzhou 730060, China.
| |
Collapse
|
2
|
Valencia M, Pérez-Beltrán M, López GD, Carazzone C, Galeano Garcia P. Molecular Networking from Volatilome of Theobroma grandiflorum (Copoazu) at Different Stages of Maturation Analyzed by HS-SPME-GC-MS. Molecules 2025; 30:1209. [PMID: 40141986 PMCID: PMC11944471 DOI: 10.3390/molecules30061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Theobroma grandiflorum (copoazu) is a plant native to South America, widely cultivated in countries within the Amazon region. Its unique phytochemical composition imparts distinctive organoleptic properties, making it an exotic fruit. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile organic compounds (VOCs) produced by copoazu. The optimal conditions for sample pretreatment were first determined using a Design of Experiments (DoE) approach. Analysis of the volatile profiles enabled the identification of 96 copoazu VOCs across three ripening stages. Of these, 79 VOCs were classified into chemical compound families using spectral correlation analysis across various libraries and databases, as well as molecular network analysis. Additionally, a volatilomic analysis was conducted to examine the changes in VOCs throughout the ripening process. Molecular network analysis showed that the VOCs emitted by the fruit are linked to the interconversion of compounds, which can be observed through the study of the metabolic pathways. These findings provide a comprehensive analysis of the copoazu volatilome, providing valuable insights into the organoleptic characteristics of this Amazonian fruit. Esters and terpenes such as α-terpineol, trans-4-methoxythujane, linalool, 2-methylbutyl butanoate, 3-methylbut-2-enoic acid, 2-methylpentyl ester, and 2-methylpropyl hexanoate were identified as potential biomarkers associated with the copoazu ripening process.
Collapse
Affiliation(s)
- Mayrin Valencia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
| | - Mónica Pérez-Beltrán
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Gerson-Dirceu López
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
- Chemistry Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Paula Galeano Garcia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| |
Collapse
|
3
|
Li Y, Wu Y, Chen S, Zhao Y, Li C, Xiang H, Wang D, Wang Y. Decoding the aroma landscape of fermented golden pompano: The interplay of ester compounds and symbiotic microbiota as revealed by metagenomics and two-dimensional flavoromics. Food Res Int 2025; 203:115832. [PMID: 40022356 DOI: 10.1016/j.foodres.2025.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Fermented pompano (Trachinotus ovatus) is a traditionally popular fermented seafood throughout Asia. Its distinctive flavor profile is primarily attributed to the microbial metabolic conversion of nutrients, which produces specific volatile compounds. Two-dimensional flavoromics of mature pompano revealed that various volatile flavor compounds accumulate throughout fermentation, with fruity (predominantly esters) and oleogustus (primarily ketones) being key flavor markers. S-curve analysis further demonstrated synergistic and additive interactions between these compounds, which enhance flavor release. Metagenomics and Kyoto Encyclopedia of Genes and Genome analysis revealed that amino acid metabolism was the pivotal pathway for ethyl ester synthesis, with Staphylococcus equorum being positively correlated with esters such as ethyl isobutyrate and ethyl enanthate. This study elucidated the interrelationship between flavor compounds and the microbial community in fermented pompano, which is expected to provide insights into flavor modulation and guide the selection of strains that produce key esters in fermented seafood products.
Collapse
Affiliation(s)
- Yujie Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300 China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| |
Collapse
|
4
|
Zhang J, Zhang Y, Zou S, Yang E, Lei Z, Xu T, Feng C. Characterization of the aroma and flavor profiles of guava fruit ( Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100228. [PMID: 39582733 PMCID: PMC11583725 DOI: 10.1016/j.fochms.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
The flavor of guava, an important tropical fruit, is influenced by secondary metabolites. However, the mechanisms and processes underlying flavor formation in guava remain unclear. In this study, dynamic changes in volatile organic compounds (VOCs), sugars, and organic acids in guava peel and flesh across different developmental stages were investigated using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Here, we identified 90 VOCs, three sugars and eight organic acids. The dynamics of VOCs differ between the flesh and peel. The early developmental stages are more critical in influencing the variation of VOCs in the flesh, while VOC changes in peel occur more progressively across the developmental stages. By integrating transcriptomic and metabolomic analyses, we identified several key genes involved in VOC, sugar, and acid metabolism. This is the first study to describe the expression patterns of these genes throughout guava development, providing new insights into guava flavor development.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shuaiyu Zou
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
5
|
Wang Y, Huang Y, Song L, Wang H, Wan L, Pang J, Liang W. The characteristic VOCs of different parts of Artocarpus heterophyllus fruit based on HS-SPME-GC-MS and PTR-TOF-MS. Food Chem 2024; 459:140431. [PMID: 39018618 DOI: 10.1016/j.foodchem.2024.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Insight investigation on both edible pulps and inedible parts involving inflorescence axis and shreds of Artocarpus heterophyllus Lam were carried out, a total of 98 VOCs and 201 masses were identified by the combination of HS-SPME-GC-MS and PTR-TOF-MS. Among them, according to the consistency of OAV and results of VIP > 1, p < 0.05, compounds methyl isovalerate (A2), 3-methylbutyl acetate (A5) and octanoic acid, ethyl ester (A21) were recognized as aroma markers to distinguish the pulps, shreds and inflorescence axis. Meanwhile, the inflorescence axis (IC50: 1.82 mg/mL) and shreds (IC50: 16.74 mg/mL) exhibited more excellent antioxidant potency than pulps (IC50: 17.43 mg/mL) in vitro. These findings validated the feasibility of coupling HS-SPME-GC-MS and PTR-TOF-MS for rapid detection of characteristic VOCs of this plant, and offered new prospect of fragrance utilization and waste management of the edible and inedible parts of A. heterophyllus fruit.
Collapse
Affiliation(s)
- Yueping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yequn Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lianping Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hong Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Wan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jinqian Pang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjuan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Sun H, Du J, Yan X, Chen X, Zhao L. Dynamic changes in aromas and precursors of edible fungi juice: mixed lactic acid bacteria fermentation enhances flavor characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8541-8552. [PMID: 39392670 DOI: 10.1002/jsfa.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Lactic acid bacteria (LAB) fermentation technology has been increasingly used in the deep processing of edible fungi. However, the flavor profiles of edible fungi products after mixed LAB fermentation have received less attention and how aromas changes during the mixed LAB fermentation are still open questions. In the present study, fermented Hericium erinaceus and Tremella fuciformis compound juice (FHTJ) was prepared by mixed LAB strains. We aimed to systematically monitor the dynamic changes of aromas and precursors throughout the fermentation process and a data-driven association network analysis was used to tentatively illustrate the mechanisms of formation between aromas and their precursors. RESULTS Mixed LAB fermentation could enrich the aroma profile of FHTJ, reducing the unpleasant flavors such as nonanal and 1-octen-3-ol, as well as increasing the floral flavors such as ethyl acetate and α-pinene. Partial least squares-discriminant analysis and relative odor activity values revealed that 11 volatile chemicals were recognized as aroma-active markers. Volcano plot analysis showed that 3-octen-2-one (green flavor) was the key aroma-active marker in each stage, which was down-regulated in fermentation stages I, II and IV, whereas it was up-regulated in stage III. 3-Octen-2-one was significantly negatively correlated with organic acids, particularly pyruvate (r2 = -0.89). Ethyl caprylate (floral flavor) was up-regulated in the late fermentation stage, and showed a negative correlation with sugar alcohols and a positive correlation with organic acids, especially tartaric acid (r2 = 0.96). CONCLUSION The present study demonstrates the beneficial effect of mixed LAB fermentation on flavor characteristics, providing guidance for fermented edible fungi juice flavor quality monitoring and control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailan Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxin Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xingyue Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Katherinatama A, Asikin Y, Shimoda K, Shimomura M, Mitsube F, Takara K, Wada K. Characterization of Free and Glycosidically Bound Volatile and Non-Volatile Components of Shiikuwasha ( Citrus depressa Hayata) Fruit. Foods 2024; 13:3428. [PMID: 39517212 PMCID: PMC11544857 DOI: 10.3390/foods13213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Shiikuwasha, a citrus fruit native to Okinawa, Japan, has various cultivation lines with distinct free volatile and non-volatile components. However, the glycosylated volatiles, which are sources of hidden aromas, remain unknown. This study aimed to characterize the chemical profiles of free and glycosidically bound volatile as well as non-volatile components in the mature fruits of six Shiikuwasha cultivation lines: Ishikunibu, Izumi kugani-like, Kaachi, Kohama, Nakamoto seedless, and Ogimi kugani. Free volatiles were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. Glycosides were collected via solid-phase extraction and hydrolyzed with β-glucosidase, and the released volatiles were measured. Additionally, the non-volatile components were determined using non-targeted proton nuclear magnetic resonance analysis. Total free and bound volatiles ranged from 457 to 8401 µg/L and from 104 to 548 µg/L, respectively, and the predominant free volatiles found were limonene, γ-terpinene, and p-cymene. Twenty volatiles were released from glycosides, including predominant 1-hexanol and benzyl alcohol, with Kaachi and Ogimi kugani showing higher concentrations. Principal component analysis (PCA) revealed that taste-related compounds like sucrose, citrate, and malate influenced line differentiation. The PCA of the combined data of free and bound volatile and non-volatile components showed flavor component variances across all lines. These findings provide valuable insights into the chemical profiles of Shiikuwasha fruits for fresh consumption and food and beverage processing.
Collapse
Affiliation(s)
- Aldia Katherinatama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Kazuki Shimoda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Momoko Shimomura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Fumimasa Mitsube
- Okinawa Prefectural Agricultural Research Center Nago Branch, 4605-3, Nago 905-0012, Okinawa, Japan
- Hokubu Agriculture, Forestry and Fisheries Promotion Center, Okinawa Prefectural Government, 1-13-11 Ominami, Nago 905-0015, Okinawa, Japan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| |
Collapse
|
8
|
Mu Y, Ao X, Zhao Z, Liu D, Meng D, Chen L, Wang X, Lv Z. The anabolism of volatile compounds during the pasteurization process of sea buckthorn ( Hippophae rhamnoides) pulp. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1823-1832. [PMID: 39285994 PMCID: PMC11401805 DOI: 10.1007/s13197-024-05943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 09/19/2024]
Abstract
Pasteurization (PS) causes the abnormal changes in volatiles and off-flavors in juices and limit the commercial production of juices. Herein, the first study on the biochemical reaction of volatile and nonvolatile compounds in response to PS factors during the process of sea buckthorn pulp (SBP) was evaluated. Processing conditions (mainly 80 °C for 20 min) had significant effects on the volatile and nonvolatile compounds. The restricted unsaturated fatty acid metabolism led to the greatest decrease of 20.25% in esters with fruity odor, and furans, smelling like caramel and toast, exhibited the highest increase of 136.40% because of the enhancement of the Maillard reaction. Dimethyl sulfide and dimethyl trisulfide elicited a cooked onion-like off-flavor, generated mainly from Strecker degradation of sulfur-containing amino acids, strengthened by the high pH and sufficient substrates due to the highest consumption rates of 4.66% and 12.01% for organic acids and sugars. Reasonable temperature and time control are crucial to the improvement of the process for PS for the SBP industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05943-z.
Collapse
Affiliation(s)
- Yihan Mu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xuan Ao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhichao Zhao
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou, 730060 China
| | - Dongwei Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Luyao Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
- Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
9
|
Jiang D, Han Q, Su Y, Cao X, Wu B, Wei C, Chen K, Li X, Zhang B. Glycoside hydrolase PpGH28BG1 modulates benzaldehyde metabolism and enhances fruit aroma and immune responses in peach. PLANT PHYSIOLOGY 2024; 196:1444-1459. [PMID: 39140299 DOI: 10.1093/plphys/kiae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Benzaldehyde (BAld) is one of the most widely distributed volatiles that contributes to flavor and defense in plants. Plants regulate BAld levels through various pathways, including biosynthesis from trans-cinnamic acid (free BAld), release from hydrolysis of glycoside precursors (BAld-H) via multiple enzymatic action steps, and conversion into downstream chemicals. Here, we show that BAld-H content in peach (Prunus persica) fruit is up to 100-fold higher than that of free BAld. By integrating transcriptome, metabolomic, and biochemical approaches, we identified glycoside hydrolase PpGH28BG1 as being involved in the production of BAld-H through the hydrolysis of glycoside precursors. Overexpressing and silencing of PpGH28BG1 significantly altered BAld-H content in peach fruit. Transgenic tomatoes heterologously expressing PpGH28BG1 exhibited a decrease in BAld-H content and an increase in SA accumulation, while maintaining fruit weight, pigmentation, and ethylene production. These transgenic tomato fruits displayed enhanced immunity against Botrytis cinerea compared to wild type (WT). Induced expression of PpGH28BG1 and increased SA content were also observed in peach fruit when exposed to Monilinia fructicola infection. Additionally, elevated expression of PpGH28BG1 promoted fruit softening in transgenic tomatoes, resulting in a significantly increased emission of BAld compared to WT. Most untrained taste panelists preferred the transgenic tomatoes over WT fruit. Our study suggests that it is feasible to enhance aroma and immunity in fruit through metabolic engineering of PpGH28BG1 without causing visible changes in the fruit ripening process.
Collapse
Affiliation(s)
- Dan Jiang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Qingyuan Han
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiangmei Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Boping Wu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunyan Wei
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
10
|
Machado AMR, Teodoro AJ, Mariutti LRB, Fonseca JCND. Tamarillo ( Solanum betaceum Cav.) wastes and by-products: Bioactive composition and health benefits. Heliyon 2024; 10:e37600. [PMID: 39309964 PMCID: PMC11416485 DOI: 10.1016/j.heliyon.2024.e37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.
Collapse
Affiliation(s)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
11
|
Yao Y, Zhang R, Jia R, Yao Z, Qiao Y, Wang Z. Exploration of Raw Pigmented-Fleshed Sweet Potatoes Volatile Organic Compounds and the Precursors. Molecules 2024; 29:606. [PMID: 38338351 PMCID: PMC10856654 DOI: 10.3390/molecules29030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-β-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 μg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-β-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.
Collapse
Affiliation(s)
- Yanqiang Yao
- College of Agriculture and Biotechnology, Hebei Normal University of Science & Technology, Changli 066600, China;
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (R.J.); (Z.Y.)
| | - Rong Zhang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (R.J.); (Z.Y.)
| | - Ruixue Jia
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (R.J.); (Z.Y.)
| | - Zhufang Yao
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (R.J.); (Z.Y.)
| | - Yake Qiao
- College of Agriculture and Biotechnology, Hebei Normal University of Science & Technology, Changli 066600, China;
| | - Zhangying Wang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (R.J.); (Z.Y.)
| |
Collapse
|
12
|
Hu J, Sun X, Yang F, Vidyarthi SK, Xiao H, Liu C, Duan X, Wang H. Changes in, and correlation analysis of, volatile compounds, key enzymes, and fatty acids in lemon juice vesicles during freeze drying and hot-air drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6330-6339. [PMID: 37195093 DOI: 10.1002/jsfa.12707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lemon juice vesicles are distinguished by their unique and abundant volatile flavor compounds, which can undergo complex changes during drying. In this study, integrated freeze drying (IFD), conventional freeze drying (CFD), and hot-air drying (AD) were used to dry lemon juice vesicles to investigate the changes in, and correlations among volatile compounds, fatty acids, and key enzyme activity during the drying process. RESULTS Twenty-two volatile compounds were detected during the drying processes. Compared with fresh samples, seven compounds were lost in the dried samples after IFD, seven after CFS, and six after AD, and the loss rates of the total content of volatile compounds in the dried samples were 82.73% in CFD, more than 71.22% in IFD, and more than 28.78% in AD. In total, 1.015 mg/g of seven fatty acids were detected in the fresh samples; the content loss rates of total fatty acids after drying were 67.68% in AD, more than 53.00% in CFD, and more than 36.95% in IFD, respectively. During the three drying processes, IFD retained relatively higher enzyme activity in the samples. CONCLUSION Many positive and negative correlations (P < 0.05) were observed among the key enzyme effects, fatty acids, and volatile compounds, showing close associations. The current work provides information that is important for the selection of suitable drying techniques for lemon juice vesicles and suggests how to control their flavor during the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaqi Hu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Feifei Yang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Chunju Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaojie Duan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
13
|
Ge YH, Li X, Huang M, Huang Z, Wu M, Sun B, Wang L, Wu JL, Li N. Aroma correlation assisted volatilome coupled network analysis strategy to unveil main aroma-active volatiles of Rosa roxburghii. Food Res Int 2023; 169:112819. [PMID: 37254394 DOI: 10.1016/j.foodres.2023.112819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
To investigate the main aroma-active volatiles out from comprehensive chemical profile, we proposed an aroma correlation assisted volatilome coupled network analysis strategy and applied it to the study of Rosa roxburghii. Based on 475 detected volatiles with GC × GC-TOF/MS analysis, the volatilome was screened with both positive aroma activities and high contents to discover some aliphatic acids, alcohols, aldehydes and esters, terpenoids as well as some alkenes and ketones. Especially, a series of homologous C6- and C8- acids, alcohols, aldehydes, esters as well as some terpenoids like limonene take the predominant contributions to the aromas. Moreover, two aroma-active and aroma-contributing volatile groups including acid-aldehyde-alcohol-ester and terpenoid groups were clustered to integrally be responsible for the major aromas of R. roxburghii with network analysis. Additionally, the accumulation of C6- and C8-family homologous aliphatic volatiles was also elucidated with linoleic and linolenic acid derived pathways. This strategy is practical to investigate the main aroma-active volatiles based on volatilome.
Collapse
Affiliation(s)
- Ya-Hui Ge
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Manman Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lishuang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| |
Collapse
|
14
|
Liu Q, Lin J, Zhao W, Lei M, Yang J, Bai W. The dynamic changes of flavors and UPLC-Q-Exactive-Orbitrap-MS based lipidomics in mackerel (Scomberomorus niphonius) during dry-cured processing. Food Res Int 2023; 163:112273. [PMID: 36596184 DOI: 10.1016/j.foodres.2022.112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Dry-cured mackerel is favored by consumers for its suitable salty flavor. Herein, the dynamic changes of volatile compounds and lipids in the mackerel, and the lipidomics based on UPLC-Orbitrap/MS technique during dry-cured processing were investigated. The results showed that endogenous lipases activities in dry-cured mackerel decreased. The dry-cured processing of mackerel had significant effects on its lipid classes and content. The contents of Arachidonic acid (C20:4n6), docosapentaenoic acid (C22:5n3), linoleic acid (LA, C18:2n6), alpha-linolenic acid (C18:3n3), eicosatrienoic acid (C20:3n3) and docosahexaenoic acid (DHA, C22:6n3) increased during dry-cured processing. A total of 38 kinds of volatile compounds were detected in the dry-cured mackerel, 12 of which were derived from fatty acid oxidation. Among 30 lipid metabolites (FC ≥ 2 and VIP > 2), phosphatidylethanolamine (PE, 19:0/22:6) accounted for the highest content, and its difference between three stages was the most obvious. Glycerophospholipid and sphingolipid metabolisms were the most important metabolic pathways involved in dry-cured processing.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
15
|
Chen X, Gu Z, Peng Y, Quek SY. What happens to commercial camembert cheese under packaging? Unveiling biochemical changes by untargeted and targeted metabolomic approaches. Food Chem 2022; 383:132437. [PMID: 35182863 DOI: 10.1016/j.foodchem.2022.132437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Camembert cheese undergoes various biochemical changes during ripening, which lead to its unique aroma and typical flavor characteristics. This study aimed to systemically evaluate the primary biochemical events (lipolysis and proteolysis) and secondary metabolites (flavor compounds) of commercial Camembert during 56 days of ripening under packaging conditions. The changes of free fatty acid, free amino acids, soluble nitrogen, proteins/peptides distribution, odorant contribution, and volatile profiles were studied. Results showed that the lipolytic process was prevalent during the initial 14 days, while the proteolysis level continuously increased as the ripening period advanced, causing the index of ripening depth to increase from 4.8% to 13.9%. On day 28, the sample developed odorants with high modified frequency values of 94.3%. With the untargeted metabolomic approaches, two major (γ-butyrolactone and methyl heptenone) and four minor (3-methyl-1-butanol, γ-hexalactone, 2-nonanone, and dodecanoic acid) volatile markers were recognized to discriminate the ripening stages of Camembert cheese.
Collapse
Affiliation(s)
- Xiao Chen
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yinghan Peng
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
16
|
Fella P, Kaikiti K, Stylianou M, Agapiou A. HS-SPME-GC/MS Analysis for Revealing Carob's Ripening. Metabolites 2022; 12:metabo12070656. [PMID: 35888780 PMCID: PMC9320592 DOI: 10.3390/metabo12070656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Carob's recognized nutritional and medicinal value next to its unique agriculture importance is associated with an array of social, economic, and cultural activities. The carob fruit is popular for its intense aroma due to the emitted volatile organic compounds (VOCs). The composition of VOCs released from carob fruits changes during ripening, rendering it a non-invasive tool for the determination of the ripening period and freshness of the fruit. Therefore, headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS) was applied to reveal the respective gaseous signal molecules related to fruit maturity. The sampling was implemented during weeks 26-36 from five different locations in Cyprus. Additionally, the gaseous emissions of total VOCs (TVOCs) and carbon dioxide (CO2) were recorded next to the moisture content of the fruit. The major chemical classes in the ripening are acids, followed by esters, and ketones. More specifically, the most abundant VOCs during ripening are propanoic acid, 2-methyl-(isobutyric acid), 2-heptanone, propanoic acid, 2-methyl-, 2-methylbutyl ester, acetic acid, methyl isobutyrate, propanoic acid, 2-methyl-, 3-methylbutyl ester, 2-pentanone, butanoic acid and propanoic acid, 2-methyl-ethyl ester. Finally, CO2 emissions and moisture content showed a rapid decline until the 31st week and then stabilized for all examined areas. The methodology revealed variations in VOCs' profile during the ripening process.
Collapse
|
17
|
Leonard W, Zhang P, Ying D, Fang Z. Surmounting the off-flavor challenge in plant-based foods. Crit Rev Food Sci Nutr 2022; 63:10585-10606. [PMID: 35603719 DOI: 10.1080/10408398.2022.2078275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plant-based food products have been receiving an astronomical amount of attention recently, and their demand will most likely soar in the future. However, their unpleasant, intrinsic flavor and odor are the major obstacles limiting consumer's acceptance. These off-flavors are often described as "green," "grassy," "beany," "fatty" and "bitter." This review highlights the presence and formation of common off-flavor volatiles (aldehydes, alcohols, ketones, pyrazines, furans) and nonvolatiles (phenolics, saponins, peptides, alkaloids) from a variety of plant-based foods, including legumes (e.g. lentil, soy, pea), fruits (e.g. apple, grape, watermelon) and vegetables (e.g. carrot, potato, radish). These compounds are formed through various pathways, including lipid oxidation, ethanol fermentation and Maillard reaction (and Strecker degradation). The effect of off-flavor compounds as received by the human taste receptors, along with its possible link of bioactivity (e.g. anti-inflammatory effect), are briefly discussed on a molecular level. Generation of off-flavor compounds in plants is markedly affected by the species, cultivar, geographical location, climate conditions, farming and harvest practices. The effects of genome editing (i.e. CRISPR-Cas9), various processing technologies, such as antioxidant supplementation, enzyme treatment, extrusion, fermentation, pressure application, and different storage and packaging conditions, have been increasingly studied in recent years to mitigate the formation of off-flavors in plant foods. The information presented in this review could be useful for agricultural practitioners, fruits and vegetables industry, and meat and dairy analogue manufacturers to improve the flavor properties of plant-based foods.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Chen X, Quek SY. Free and glycosidically bound aroma compounds in fruit: biosynthesis, transformation, and practical control. Crit Rev Food Sci Nutr 2022; 63:9052-9073. [PMID: 35452325 DOI: 10.1080/10408398.2022.2064422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit aroma makes an initial flavor impression and largely determines the consumer preference and acceptance of fruit products. Free volatile organic compounds (FVOCs) directly make up the characteristic aromas of fruits. While glycosidically bound volatile compounds (GBVs) can be hydrolyzed during fruit ripening, postharvest storage, and processing, releasing the attached aglycones as free volatiles that could alter the overall aroma attributes of fruits. GBVs typically exhibit significantly higher concentrations than their free counterparts in fruits such as grapes, cherries, kiwifruits, tomatoes, and tamarillos. This review highlights the biosynthesis of FVOCs and GBVs in fruit and illustrates their biological transformations for various functional purposes such as detoxification, aroma enhancement, plant defense, and pollinator attraction. Practical applications for regulating the levels of aroma compounds emitted or accumulated in fruit are also reviewed, emphasizing the metabolic engineering of free volatile metabolites and hydrolytic technologies on aroma glycosides. Generally, enzymatic hydrolysis using AR2000 is a common strategy to enhance the sensory attributes of fruit juices/wines, while acidic hydrolysis induces the oxidation and rearrangement of aglycones, generating artifacts with off-aromas. This review associates the occurrence of free and glycosidic bound volatiles in fruit and addresses their importance in fruit flavor enhancement and industrial applications.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| |
Collapse
|
19
|
Liu Q, Hamid N, Liu Y, Kam R, Kantono K, Wang K, Lu J. Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder. Molecules 2022; 27:2687. [PMID: 35566037 PMCID: PMC9103875 DOI: 10.3390/molecules27092687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tamarillo fruit contains many phytochemicals that have beneficial therapeutic and nutritional properties. Spray-drying is widely used to preserve fruit puree in powder form. However, to obtain high-quality fruit powder, the optimisation of spray-drying conditions is necessary, as a high drying temperature can damage sensitive bioactive compounds. This study investigated the effects of spray-drying on the microstructure, polyphenolics, total flavonoids, total carotenoids, antioxidant activity, and anticancer capacity of tamarillo powder. Response surface methodology (RSM) was used to optimise the spray-drying process to produce tamarillo powder. The independent variables were inlet drying temperature (120-160 °C), flow rate (1-5 g/mL), and maltodextrin concentration (0-10%). These variables influenced the microstructural attributes, bioactive components, and cytotoxicity of the spray-dried tamarillo powder. The increase in polyphenols and antioxidant activities were favoured under high-temperature spray drying conditions and a low carrier concentration. The optimised spray-drying conditions for producing tamarillo powder with high antioxidant and anticancer activities, high yield, and stable bioactive compounds were found to be at 146.8 °C inlet temperature, and a flow rate of 1.76 g/mL.
Collapse
Affiliation(s)
- Qian Liu
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Nazimah Hamid
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Ye Liu
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Rothman Kam
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Kevin Kantono
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Kelvin Wang
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand; (K.W.); (J.L.)
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand; (K.W.); (J.L.)
- School of Public Health & Interdisciplinary Studies, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
20
|
Chen X, Kilmartin PA, Fedrizzi B, Quek SY. Elucidation of Endogenous Aroma Compounds in Tamarillo ( Solanum betaceum) Using a Molecular Sensory Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9362-9375. [PMID: 34342975 DOI: 10.1021/acs.jafc.1c03027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycosidically bound volatiles (GBVs) are flavorless compounds in fruits and may undergo hydrolysis during fruit maturation, storage, and processing, releasing free aglycones that are odor active. However, the contribution of glycosidic aglycones to the sensory attributes of fruits remains unclear. Herein, the key odor-active aglycones in tamarillo fruits were elucidated through the molecular sensory approach. We extracted GBVs from three cultivars of tamarillo fruits using solid-phase extraction and subsequently prepared aglycone isolates by enzymatic hydrolysis of GBVs. Gas chromatography-mass spectrometry-olfactometry (GC-MS-O) coupled with odor activity value (OAV) calculation, comparative aroma extract dilution analysis (cAEDA), and omission tests were used to identify key aromatic aglycones. A total of 42 odorants were determined by GC-MS-O analysis. Among them, trans-2,cis-6-nonadienal, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), linalool, 4-vinylguaiacol, geraniol, and α-terpineol showed high OAVs. The cultivar Amber had more aglycones with flavor dilution (FD) factors >16 than the Mulligan cultivar (27 vs 21, respectively), and the Laird's Large fruit showed the highest FD of 1024 for glycosidic DMHF. Omission tests indicated 14 aglycones as essential odorants related to GBVs in tamarillo fruits. Moreover, the enzymatic liberation of aglycones affected the sensory attributes of the tamarillo juice, resulting in an intensified odor profile with noticeable fruity and sweet notes. This study gives insights into the role of endogenous aroma during tamarillo-flavor perception, which lays the groundwork for developing tamarillo-based products with improved sensory properties.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand
| |
Collapse
|
21
|
Effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Food Chem 2021; 368:130797. [PMID: 34399178 DOI: 10.1016/j.foodchem.2021.130797] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023]
Abstract
This work monitored the effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Three commercial varieties of chili pepper (Capsicum frutescens Linn.) at three ripening stages were selected. Physiochemical quality (color, texture, and vitamin C) and flavor properties [capsaicinoids, free amino acid (FAA), and aroma] were determined and compared by multivariate data analysis. The hardness and chewiness decreased, while the contents of vitamin C, capsaicin, and taste-active FAAs increased in Paojiao with ripening. More volatiles were found in green peppers. Fingerprinting and multivariate data analysis revealed that ester, aldehydes, and terpenes were discriminant volatiles that significantly changed in Paojiao during ripening. In general, ripening and variety greatly affect the physiochemical and flavor quality of peppers and their effects intensify after fermentation.
Collapse
|
22
|
Zidi K, Kati DE, Bachir-bey M, Genva M, Fauconnier ML. Comparative Study of Fig Volatile Compounds Using Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry: Effects of Cultivars and Ripening Stages. FRONTIERS IN PLANT SCIENCE 2021; 12:667809. [PMID: 34276728 PMCID: PMC8283200 DOI: 10.3389/fpls.2021.667809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
Aroma is one of the essential parameters that determine fruit quality. It is also an important feature of varietal characterization and so valuable for agro-biodiversity identification and preservation. In order to characterize changes in the aroma fingerprint through fig development, the main objective of the present research was to study the volatile organic compound (VOC) profiles of figs (Ficus carica L.) from three cultivars, Taamriwthe (TH), Azegzaw (AZ), and Averkane (AV), at three ripening stages (unripe, ripe, and fully ripe). Analyses was performed using Headspace Solid-phase Microextraction and gas chromatography coupled with mass spectrometry. Results revealed the presence of 29 compounds that were grouped into different chemical classes. Aldehydes comprised the most abundant VOCs identified in all the studied figs, while alcohols, ketones, and terpenes comprised the minor compounds found in TH, AZ, and AV figs, respectively. Different aroma descriptors were identified throughout the ripening stages of figs; fruity and green aromas were dominant in all cultivars, while a fatty aroma scarcely occurred in figs. A gallery plot representation demonstrated that certain VOCs differentiate the studied cultivars and the different ripening stages of figs. Principal component analysis findings demonstrated characteristic VOCs of distinct ripening stages and cultivars, those VOCs can be used as fingerprints to distinguish different cultivars and/or ripening stages.
Collapse
Affiliation(s)
- Kahina Zidi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Mostapha Bachir-bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Manon Genva
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
23
|
Chen X, Fedrizzi B, Kilmartin PA, Quek SY. Free and Glycosidic Volatiles in Tamarillo ( Solanum betaceum Cav. syn. Cyphomandra betacea Sendt.) Juices Prepared from Three Cultivars Grown in New Zealand. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4518-4532. [PMID: 33843220 DOI: 10.1021/acs.jafc.1c00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the free and glycosidic-bound volatiles in the juice samples of three tamarillo cultivars (i.e. Amber, Mulligan, and Laird's Large) that are widely grown in New Zealand. Juice samples were prepared from fruits at different ripening stages (green, middle, and ripe). Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was applied to analyze the free volatiles in the samples. A total of 20 free volatiles were detected. Among the samples, the ripe Mulligan juice gave the highest contents of free terpenoids (424 μg/L) and esters (691 μg/L). The glycosidic-bound volatiles were prepared by solid-phase extraction. The matrix effect was evaluated based on the recovery rate of analytes containing multiple aglycone classes. From the results, phenyl β-d-glucopyranoside was selected to compensate the matrix effect caused by insufficient acquisition of glycosidic volatiles during analyte preparation. In all the ripe-fruit juice samples, the aglycones 4-hydroxy-2,5-dimethyl-3(2H)-furanone and trans-2, cis-6-nonadienal were found to give high odor activity values. According to multivariate statistical analysis, 11 free volatiles and 22 glycosidic volatiles could be potentially applied as volatile makers to distinguish the juice samples. This study has provided a comprehensive understanding of the flavor chemistry of tamarillo juices, with a focus on the potential role of glycosidic aglycones as aroma contributors to tamarillo products.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Centre of Research Excellence in Food Research, Riddet Institute, Palmerston North 4474, New Zealand
| |
Collapse
|
24
|
Chen X, Ting JLH, Peng Y, Tangjaidee P, Zhu Y, Li Q, Shan Y, Quek SY. Comparing Three Types of Mandarin Powders Prepared via Microfluidic-Jet Spray Drying: Physical Properties, Phenolic Retention and Volatile Profiling. Foods 2021; 10:foods10010123. [PMID: 33435574 PMCID: PMC7827879 DOI: 10.3390/foods10010123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to offer an alternative way for delivering the benefits of the mandarin fruit juice to consumers via spray drying microencapsulation. Two mandarin cultivars, Afourer (A) and Richard Special (RS), were studied. Three types of juice sample were prepared, i.e., the whole fruit juice (A3 & RS3), the flavedo-removed fruit juice (A2 & RS2), and the peel-removed fruit juice (A1 & RS1) samples. Gum Acacia and maltodextrin (ratio of 1:1, w/w) were chosen as wall matrices for aiding the drying of the juice samples while using a microfluidic-jet spray dryer. The properties of the fruit powder (colour, water activity, bulk/trapped density, solubility, hygroscopicity, morphology) and the retention of major phytochemicals (i.e., phenolic and volatile compounds) were examined. The results showed that the powders produced from the whole fruit juices (A3 and RS3) gave higher yellow colour with a regular winkled surface than other powders (A1 & RS1, and A2 & RS2). The water activity of mandarin powders was in a range of 0.14 to 0.25, and the solubility was around 74% with no significant difference among all of the powders. The whole fruit powders had a significantly higher concentration of phenolic compounds (A3, 1023 µg/100 mg vs. A2, 809 µg/100 mg vs. A1, 653 µg/100 mg) and aroma compounds (A3, 775,558 µg/L vs. A2, 125,617 µg/L vs. A1, 12,590 µg/L). This study contributed to the delivery of phenolic and flavour compounds of the mandarin fruits, at the same time minimising waste generation during processing. It also gave insight into the production of spray-dried powders from the whole mandarin fruits.
Collapse
Affiliation(s)
- Xiao Chen
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
| | - Joanna Le Hoong Ting
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
| | - Yaoyao Peng
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
| | - Pipat Tangjaidee
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
| | - Yongchao Zhu
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
| | - Qili Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China
- Correspondence: (Y.S.); (S.Y.Q.)
| | - Siew Young Quek
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (X.C.); (J.L.H.T.); (Y.P.); (P.T.); (Y.Z.)
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand
- Correspondence: (Y.S.); (S.Y.Q.)
| |
Collapse
|