1
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025; 306:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, HR, 131028 India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, HR, 131028 India.
| |
Collapse
|
2
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Goshtasbi H, Abdolahinia ED, Fathi M, Movafeghi A, Omidian H, Barar J, Omidi Y. Astaxanthin-loaded alginate-chitosan gel beads activate Nrf2 and pro-apoptotic signalling pathways against oxidative stress. J Microencapsul 2024; 41:140-156. [PMID: 38410930 DOI: 10.1080/02652048.2024.2319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Oxidative stress (OS) plays a crucial role in disease development. Astaxanthin (ATX), a valuable natural compound, may reduce OS and serve as a treatment for diseases like neurodegenerative disorders and cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates antioxidant enzymes and OS management. We evaluated ATX's antioxidant activity via Alg-CS/ATX gel beads in vitro. ATX-encapsulated alginate-chitosan (Alg-CS/ATX) gel beads were synthesized and structurally/morphologically characterized by SEM, FT-IR, and XRD. Their biological effects were examined in human umbilical vein endothelial cells (HUVECs) treated with H2O2 through MTT assay, Annexin V/PI, cell cycle studies, and western blotting. Alg-CS effectively carried ATX, with high capacity and reduced pore size. Alg-CS/ATX displayed an 84% encapsulation efficiency, maintaining stability for 30 days. In vitro studies showed a 1.4-fold faster release at pH 5.4 than at neutral pH, improving ATX's therapeutic potential. HUVECs treated with Alg-CS/ATX showed enhanced viability via increased Nrf2 expression. Alg-CS gel beads exhibit significant potential as a biocompatible vehicle for delivering ATX to combat OS with considerable opportunity for clinical applications.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
4
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Wang Y, Zhang X, Yan M, Zhao Q. Enhancing the stability of lutein emulsions with a water-soluble antioxidant and a oil-soluble antioxidant. Heliyon 2023; 9:e15459. [PMID: 37113795 PMCID: PMC10126903 DOI: 10.1016/j.heliyon.2023.e15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lutein is critical for protecting the eye against light damage. The low solubility and high sensitivity of lutein to environmental stresses prevent its further application. The hypothesis is that the combination of one water-soluble antioxidant and one oil-soluble antioxidant will be beneficial to improve the stability of lutein emulsions. A low-energy method was performed to prepare lutein emulsions. The combination of a lipid-soluble antioxidant (propyl gallate or ethylenediaminetetraacetic acid) and a water-soluble antioxidant (tea polyphenol or ascobic acid) were investigated for improving the lutein retention rates. It was shown that the highest lutein retention rate was achieved by using propyl gallate and tea polyphenol, 92.57%, at Day 7. It was proven that the lutein retention rates of emulsions with propyl gallate and tea polyphenol were 89.8%, 73.5% and 55.2% at 4 °C, 25 °C and 37 °C, respectively, at Day 28. The current study is helpful to prepare for the further application of lutein emulsions for ocular delivery.
Collapse
|
6
|
Yakoubi S, Kobayashi I, Uemura K, Nakajima M, Hiroko I, Neves MA. Development of a novel colloidal system enhancing the dispersibility of tocopherol nanoparticles in a nanoscale nutraceutical delivery system. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Optimizing the Appearance of plant-based Foods: Impact of Pigment and Droplet Characteristics on Optical Properties of Model oil-in-water Emulsions. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
In vitro digestion of binary mixture of α-tocopherol and γ-oryzanol in oil-in-water emulsion: Changes in stability and antioxidant potential. Food Res Int 2022; 159:111606. [DOI: 10.1016/j.foodres.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
|
9
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
10
|
Gao Y, Liu Q, Wang Z, Zhuansun X, Chen J, Zhang Z, Feng J, Jafari SM. Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Yi J, Huang H, Wen Z, Fan Y. Fabrication of chitosan-gallic acid conjugate for improvement of physicochemical stability of β-carotene nanoemulsion: Impact of Mw of chitosan. Food Chem 2021; 362:130218. [PMID: 34087713 DOI: 10.1016/j.foodchem.2021.130218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
In this research, three various Mw of chitosan (CS)-gallic acid (GA) conjugates were synthesized, characterized, and used for improvement of physicochemical stability of β-carotene (BC) nanoemulsion (NE) by layer-by-layer technique. GA conjugation degrees were in the following order: HCS (125.6 mg/g) > MCS (102.3 mg/g) > LCS (74.6 mg/g) at GA:CS mass ratio of 0.5:1. Three varying Mw of CS-GA conjugates exhibited pronouncedly higher antioxidant abilities than native CS. For native CS, antioxidant abilities increased with the decrease of Mw. However, HCS-GA conjugate showed the highest antioxidant activity, due to the higher GA conjugation degrees and decreased intramolecular hydrogen bonds and crystallinity in HCS-GA conjugate. CS-GA conjugates substantially improved BC chemical stability in NE than CS and BC retentions were in the following order: HCS-GA (76.8%) > MCS-GA (68.3%) > LCS-GA (53.4%) after 30 days storage. The results obtained may provide some useful information for the applications of CS-GA conjugates for nutraceuticals stabilization in food systems.
Collapse
Affiliation(s)
- Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Huimin Huang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhen Wen
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
13
|
Chaijan M, Srirattanachot K, Nisoa M, Cheong L, Panpipat W. Practical use of
β
‐carotene‐loaded nanoemulsion as a functional colorant in sausages made from goat meat surimi‐like material. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Kesinee Srirattanachot
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Mudtorlep Nisoa
- School of Science Walailak University Nakhon Si Thammarat80161Thailand
| | - Ling‐Zhi Cheong
- Department of Food Science and Engineering School of Marine Science Ningbo University Ningbo315211China
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| |
Collapse
|