1
|
Ricardo-Rodrigues S, Laranjo M, Agulheiro-Santos AC. Methods for quality evaluation of sweet cherry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:463-478. [PMID: 35870155 DOI: 10.1002/jsfa.12144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Sweet cherry (Prunus avium L.) is a highly valued fruit, whose quality can be evaluated using several objective methodologies, such as calibre, colour, texture, soluble solids content (SSC), titratable acidity (TA), as well as maturity indexes. Functional and nutritional compounds are also frequently determined, in response to consumer demand. The aim of the present review is to clarify and establish quality evaluation parameters and methodologies for the whole cherry supply chain, in order to promote easy and faithful communication among all stakeholders. The use of near-infrared spectroscopy (NIRS) as a non-destructive and expeditious method for assessing some quality parameters is discussed. In this review, the results of a wide survey to assess the most common methodologies for cherry quality evaluation, carried out among cherry researchers and producers within the framework of the COST Action FA1104 'Sustainable production of high-quality cherries for the European market', are also reported. The standardisation of quality evaluation parameters is expected to contribute to the preservation and shelf-life extension of sweet cherries, and the valorisation of the whole supply chain. For future studies on sweet cherry, we put forward a proposal regarding both sample size and the tests chosen to evaluate each parameter. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Ricardo-Rodrigues
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Ana Cristina Agulheiro-Santos
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
- Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| |
Collapse
|
2
|
Zhang X, Ge C, Ma J, Chen L. Rapid quality determination of cherry fruit (Prunus spp.) using artificial olfactory technique as combined with non-linear data extraction model. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xiuli Zhang
- Department of Medical Technology, Tianjin Medical College, Tianjin, China
| | - Chao Ge
- Department of Medical Technology, Tianjin Medical College, Tianjin, China
| | - Jingyan Ma
- Department of Medical Technology, Tianjin Medical College, Tianjin, China
| | - Lixia Chen
- Department of Medical Technology, Tianjin Medical College, Tianjin, China
| |
Collapse
|
3
|
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research Progress and Trends in Metabolomics of Fruit Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:881856. [PMID: 35574069 PMCID: PMC9106391 DOI: 10.3389/fpls.2022.881856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xin Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Shengnan Tan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Analysis and Test Center, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|