1
|
Bashir S, Hussain SZ, Jan N, Naseer B, Zargar IA, Murtaza I, Yaseen M. Structural integrity, bioactive components, and physico-chemical characteristics of Kashmiri saffron (Crocus sativus L.) as affected by different drying techniques. Food Chem 2025; 476:143511. [PMID: 39999502 DOI: 10.1016/j.foodchem.2025.143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/30/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
This research investigated the effects of shade drying (SD), freeze drying (FD), vacuum drying (VD) and cabinet drying (CD) on saffron stigmas. Results showed FD was most effective in preserving quality, followed by VD, CD, and SD. Drying methods had no significant (p ≥ 0.05) effects on ash, moisture, and acid-insoluble ash contents. Freeze-dried saffron had the lowest water activity (0.533), bulk density (0.145 g/mL), and volume shrinkage ratio (28), with superior color retention (a* 40.09, b* 17.43) and anthocyanin content (0.73 mg C3GE/g DM). FTIR analysis indicated better crocin preservation with FD. Freeze-dried saffron also exhibited highest DPPH radical scavenging capacity (59.63 %), FRAP values (47.26 mmol/kg), ABTS+ values (75.51 %), total phenolics (72.41 mg GAE/g), crocin (901.44 mg/g), picrocrocin (9.48 mg/g) and safranal (1.80 mg/g) contents. Microstructural analysis confirmed better cellular integrity with FD, making it the most effective method for preserving saffron quality at -80 °C for 44 h.
Collapse
Affiliation(s)
- Shubli Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Imtiyaz A Zargar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Imtiyaz Murtaza
- Division of Basic Sciences and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| |
Collapse
|
2
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
3
|
Adhikari J, Araghi LR, Singh R, Adhikari K, Patil BS. Continuous-Flow High-Pressure Homogenization of Blueberry Juice Enhances Anthocyanin and Ascorbic Acid Stability during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11629-11639. [PMID: 38739462 PMCID: PMC11117402 DOI: 10.1021/acs.jafc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.
Collapse
Affiliation(s)
- Jayashan Adhikari
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Lida Rahimi Araghi
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Rakesh Singh
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Koushik Adhikari
- Department
of Food Science and Technology, University
of Georgia, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Bhimanagouda S. Patil
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
4
|
Liu R, Xie R, Zhu X, Huang C. Preparation and application of chlorine dioxide gas slow-release fresh-keeping card based on polylactic acid. Int J Biol Macromol 2024; 263:130273. [PMID: 38368990 DOI: 10.1016/j.ijbiomac.2024.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Blueberries are highly perishable after harvest, so a simple preservation method is needed to extend the shelf life of blueberries. In this study, sodium chlorite-loaded sepiolite was added to polylactide solution with tartaric acid to create a ClO2 gas slow-release fresh-keeping card. The fresh-keeping card absorbs moisture in the air, which causes tartaric acid to enter the sepiolite and react with sodium chlorite to release ClO2 gas slowly. The study investigated the impact of fresh-keeping cards on the quality attributes of blueberries, including appearance, decay rate, ethylene release rate, respiration rate, hardness, ascorbic acid content, and anthocyanin concentration. Low-field nuclear magnetic technology was used to analyze the water state and distribution of blueberries during storage. The results showed that the ClO2 gas released by the fresh-keeping card can destroy ethylene in the air and kill microorganisms in blueberries, thereby delaying fruit decay.
Collapse
Affiliation(s)
- Ren Liu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Ruibang Xie
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Xuhao Zhu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, China.
| |
Collapse
|
5
|
Domínguez I, Romero I, Teresa Sanchez-Ballesta M, Isabel Escribano M, Merodio C, Doménech-Carbó A. Electrochemistry of lyophilized blueberry and raspberry samples: ROS activation of the antioxidant ability of anthocyanins. Food Chem 2024; 435:137649. [PMID: 37820402 DOI: 10.1016/j.foodchem.2023.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
An electrochemical study of lyophilized blueberry (Vaccinium corymbosum L.) and raspberry (Rubus idaeus L.) fruits was carried out using microparticulate deposits from ethanolic extracts of fruits in contact with different aqueous electrolytes. This voltammetry is dominated by the oxidation of anthocyanins. It was hypothesized that under conditions of electrochemical generation of reactive oxygen species (ROS), new anthocyanin-derived species with high antioxidant capacity are formed over a wide pH range. In the case of ROS-activated anthocyanins, electrochemical oxidation is associated with loss of sugar moieties. Experimental voltammetric and scanning electrochemical microscopy (SECM) imaging data consistent with this hypothesis are presented.
Collapse
Affiliation(s)
- Irene Domínguez
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), La Mojonera, Camino San Nicolás, 1, Almeria E-04745, Spain.
| | - Irene Romero
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - M Teresa Sanchez-Ballesta
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - M Isabel Escribano
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - Carmen Merodio
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - Antonio Doménech-Carbó
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
6
|
Li X, Feng H, Liu S, Cui J, Liu J, Shi M, Zhao J, Wang L. Dehydrin CaDHN2 Enhances Drought Tolerance by Affecting Ascorbic Acid Synthesis under Drought in Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3895. [PMID: 38005792 PMCID: PMC10675185 DOI: 10.3390/plants12223895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a nutrient substance but also plays a role in environmental stress, i.e., drought stress. When suffering from drought stress, plants accumulate dehydrins, which play important roles in the stress response. Here, we isolated an SK3-type DHN gene CaDHN2 from peppers. CaDHN2 was located in the nucleus, cytoplasm, and cell membrane. In CaDHN2-silenced peppers, which are generated by virus-induced gene silencing (VIGS), the survival rate is much lower, the electrolytic leakage is higher, and the accumulation of reactive oxygen species (ROS) is greater when compared with the control under drought stress. Moreover, when CaDHN2 (CaDHN2-OE) is overexpressed in Arabidopsis, theoverexpressing plants show enhanced drought tolerance, increased antioxidant enzyme activities, and lower ROS content. Based on yeast two-hybrid (Y2H), GST-pull down, and bimolecular fluorescence complementation (BiFC) results, we found that CaDHN2 interacts with CaGGP1, the key enzyme in ascorbic acid (AsA) synthesis, in the cytoplasm. Accordingly, the level of ascorbic acid is highly reduced in CaDHN2-silenced peppers, indicating that CaDHN2 interacts with CaGGP1 to affect the synthesis of ascorbic acid under drought stress, thus improving the drought tolerance of peppers. Our research provides a basis for further study of the function of DHN genes.
Collapse
Affiliation(s)
- Xin Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Mingyu Shi
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Jielong Zhao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| |
Collapse
|
7
|
Kim AN, Lee KY, Han CY, Choi SG. Effect of different vacuum levels for beef brisket during cold storage: A microbiological and physicochemical analysis. Food Microbiol 2023; 114:104287. [PMID: 37290866 DOI: 10.1016/j.fm.2023.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/10/2023]
Abstract
Effect of packaging at different vacuum levels such as 7.2 Pa (99.99% vacuum), 30 kPa (70.39%), 70 kPa (30.91%), and 101.33 kPa (0%, atmospheric condition) using a specially designed airtight container on physicochemical and microbial properties of beef brisket cuts during cold storage was investigated. Dramatic pH increase was found only in air atmospheric packaging. Higher vacuum level yielded higher water holding capacity and lower volatile basic nitrogen (VBN), 2-thiobarbituric acid (TBA), and growth rate of aerobic bacteria and coliforms, whereas the fatty acid composition showed no difference among various vacuum levels. The highest vacuum level (7.2 Pa) yielded no increases in VBN, TBA, and coliform and the least increase in aerobe counts. For bacterial communities, higher vacuum levels yielded higher proportions of Leuconostoc, Carnobacterium, and lactobacilli belonging to the phylum Firmicutes and lower proportions of Pseudomonas belonging to the phylum Proteobacteria. Predictive curves for bacterial communities showed that just a little oxygen significantly affects the bacterial dominance based on different oxygen dependence of individual bacteria and their logarithmic changes by vacuum level.
Collapse
Affiliation(s)
- Ah-Na Kim
- Research Group of Safety Distribution, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
| | - Kyo-Yeon Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Chae-Yeon Han
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Sung-Gil Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Food Science and Technology (Institute of Agriculture and Life Sciences), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
8
|
Xue L, Gao R, Shen L, Zheng X, Gao M. Dependence of degradation of anthocyanins on non-uniformity of microwave heating in blueberry puree. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Ozcelik M, Kulozik U. The Role of Maltodextrin Concentration in Maintaining Storage Stability of Dried Fruit Foams Texturized Using Plant Protein-Polysaccharide Blends. Foods 2023; 12:foods12081673. [PMID: 37107469 PMCID: PMC10137890 DOI: 10.3390/foods12081673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrocolloids are widely used in food processing because of their texture-forming abilities, which help to preserve the quality of sensitive compounds, e.g., in dried fruit foams, which have recently emerged in healthier alternative snacks. Our aim was to investigate the protective role of maltodextrin in improving the storage stability of fruit foams. This study evaluated the effect of maltodextrin concentrations on the stability of the following quality parameters: anthocyanins, ascorbic acid, color, texture, and sensory perception of dried foamed raspberry pulp during storage. This study compared three concentrations (5%, 15%, and 30% w/w) of maltodextrin in mixtures, evaluating their effect on the stability of these parameters over a 12-week storage period. The foam samples were stored at 37 °C to accelerate chemical reactions under vacuum packaging conditions which excluded oxygen. The addition of 30% maltodextrin to the raspberry pulp blend resulted in the highest retentions in all compounds tested, i.e., 74% for ascorbic acid and 87% for anthocyanins. Color and texture were similarly preserved. Adding 30% maltodextrin to the mixture did not negatively influence the acceptability of sensory perception. Maltodextrin thus represents an effective protective agent for preserving nutritional and sensory qualities for a longer storage period. Hence, using MD together with potato protein was optimal for enhancing the storage stability of fruit foam, which is important for the food industry.
Collapse
Affiliation(s)
- Mine Ozcelik
- Chair of Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
10
|
Kim AN, Lee KY, Park CE, Choi SG. Effect of Heating under Different Vacuum Levels on Physicochemical and Oxidative Properties of Beef Sirloin. Foods 2023; 12:foods12071393. [PMID: 37048214 PMCID: PMC10093502 DOI: 10.3390/foods12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The physicochemical and oxidative properties of beef sirloin slices heated under atmospheric (101.33 kPa, a vacuum percent of 0%, control) and vacuum (50.8 kPa, 50% and 7.2 Pa, 99.99%) conditions by using an airtight vacuum container were compared. Heating at a higher vacuum level resulted in the lowest pH and cooking loss compared with the other conditions (p < 0.05). The beef in vacuum groups was less hard, chewy, and gummy than the control group, without any significant differences between the vacuum groups. More structural shrinkage and lower browning were observed in the meat heated at higher vacuum levels. Similarly, higher vacuum levels suppressed increases in the lightness (L*), redness (a*), and total color difference (E*) of the surface after heating. The thiobarbituric acid (TBA) values, a sensitive indicator of meat oxidation due to heating, were only influenced by the vacuum conditions. Consequently, applying a vacuum effectively prevents the degradation in the meat’s physicochemical and oxidative properties during heating. The findings are useful for the sous-vide industry because they scientifically demonstrate how vacuum pressure affects the physicochemical and oxidative properties of the meat by using a specially designed airtight vacuum container.
Collapse
|
11
|
Stability Kinetics of Anthocyanins of Grumixama Berries ( Eugenia brasiliensis Lam.) during Thermal and Light Treatments. Foods 2023; 12:foods12030565. [PMID: 36766098 PMCID: PMC9914202 DOI: 10.3390/foods12030565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a temperature range from 60 to 80 °C was critical to the stability of the anthocyanins of the grumixama extracts, with a temperature quotient value (Q10) of 2.8 and activation energy (Ea) of 52.7 kJ/mol. The anthocyanin-rich extracts of grumixama fruits showed the highest stability during exposure to incandescent irradiation (50 W), followed by fluorescent radiation (10 W). The t1/2 and k were 59.6 h and 0.012 h-1 for incandescent light, and 45.6 h and 0.015 h-1 for fluorescent light. In turn, UV irradiation (25 W) quickly degraded the anthocyanins (t1/2 = 0.18 h and k = 3.74 h-1). Therefore, grumixama fruits, and their derived products, should be handled carefully to avoid high temperature (>50 °C) and UV light exposure in order to protect the anthocyanins from degradation. Furthermore, grumixama fruits showed high contents of anthocyanins that can be explored as natural dyes; for example, by food, pharmaceutical and cosmetic industries. In addition, the results of this study may contribute to the setting of processing conditions and storage conditions for grumixama-derived fruit products.
Collapse
|
12
|
Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel) 2022; 12:antiox12010048. [PMID: 36670910 PMCID: PMC9855055 DOI: 10.3390/antiox12010048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.
Collapse
|
13
|
Kim AN, Lee KY, Han CY, Kim HJ, Choi SG. Effect of an oxygen-free atmosphere during heating on anthocyanin, organic acid, and color of strawberry puree. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Zhang L, Xiao G, Yu Y, Xu Y, Wu J, Zou B, Li L. Low-oxygen pulping combined with high hydrostatic pressure improve the stability of blueberry pulp anthocyanins and color during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Duan Y, Tarafdar A, Chaurasia D, Singh A, Bhargava PC, Yang J, Li Z, Ni X, Tian Y, Li H, Awasthi MK. Blueberry fruit valorization and valuable constituents: A review. Int J Food Microbiol 2022; 381:109890. [DOI: 10.1016/j.ijfoodmicro.2022.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
16
|
Liu Y, Liao Y, Guo M, Zhang W, Sang Y, Wang H, Cheng S, Chen G. Comparative elucidation of bioactive and volatile components in dry mature jujube fruit ( Ziziphus jujuba Mill.) subjected to different drying methods. Food Chem X 2022; 14:100311. [PMID: 35492255 PMCID: PMC9043666 DOI: 10.1016/j.fochx.2022.100311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the effects of convective drying(CD) and freeze drying(FD) on bioactive and volatile components in jujube. No significant difference in total phenolic, total flavonoids and antioxidant capacity among CD60, CD70, CD80 and FD samples (P > 0.05). LC-MS/MS analysis showed that this trend mainly originated from the dynamic equilibrium relationships between caffeic acid, chlorogenic acid, p-hydroxybenzoic acid, rutin, epicatechin, and quercetin. HS-SPME-GC-MS identified 31 volatile organic compounds (VOCs) comprising more than 80% aldehydes and acids. Principal component analysis distinguished the VOC characteristics of samples subjected to different drying methods. Six VOCs had an odor activity value (OAV) >1, most of which were fatty acid oxidation or Maillard reaction products. Combined with the precursor components, these reactions were speculated to be the major VOC-producing pathways in dried jujube. Considering the bioactive components and flavor retention, CD at 60 °C was an effective drying method with potential to replace FD.
Collapse
Affiliation(s)
- Yuxing Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yaxuan Liao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Minrui Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weida Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yueying Sang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hai Wang
- Academy of Agricultural Planning and Engineering, Beijing 100020, China
| | - Shaobo Cheng
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Guogang Chen
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
17
|
Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach. Foods 2022; 11:foods11111596. [PMID: 35681347 PMCID: PMC9179969 DOI: 10.3390/foods11111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to explore the drying kinetics, effective moisture diffusivity, activation energy, color variation, and the thermal degradation properties of anthocyanins of blood-flesh peach under hot air drying for the first time. The results showed that the hot air-drying process of blood-flesh peach belongs to reduced-speed drying. The Page model could accurately predict the change of moisture ratio of blood-flesh peach. The effective moisture diffusivity during hot air drying of blood-flesh peach was in the range between 1.62 × 10−10 and 2.84 × 10−10 m2/s, and the activation energy was 25.90 kJ/mol. Fresh samples had the highest content (44.61 ± 4.76 mg/100 g) of total monomeric anthocyanins, and it decreased with the increase of drying temperature. Cyanidin-3-O-glucoside and delphinidin-3-O-galactoside were the main anthocyanins of blood-flesh peach as identified and quantified by UPLC-QqQ-MS. Interestingly, during the drying process, the content of cyanidin-3-O-glucoside increased at the beginning, and then decreased. However, the content of delphinidin-3-O-galactoside kept decreasing during the whole drying process. Considering the drying efficiency, fruit color and quality, 70 °C would be a suitable temperature for drying blood-flesh peach. This research will provide beneficial information for understanding the anthocyanin degradation of blood-flesh peach during drying, and guide the production of high-quality dried products.
Collapse
|
18
|
Chen Y, Belwal T, Xu Y, Ma Q, Li D, Li L, Xiao H, Luo Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit Rev Food Sci Nutr 2022; 63:8639-8671. [PMID: 35435782 DOI: 10.1080/10408398.2022.2063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins have received considerable attention for the development of food products with attractive colors and potential health benefits. However, anthocyanin applications have been hindered by stability issues, especially in the context of complex food matrices and diverse processing methods. From the natural microenvironment of plants to complex processed food matrices and formulations, there may happen comprehensive changes to anthocyanins, leading to unpredictable stability behavior under various processing conditions. In particular, anthocyanin hydration, degradation, and oxidation during thermal operations in the presence of oxygen represent major challenges. First, this review aims to summarize our current understanding of key anthocyanin stability issues focusing on the chemical properties and their consequences in complex food systems. The subsequent efforts to examine plenty of cases attempt to unravel a universal pattern and provide thorough guidance for future food practice regarding anthocyanins. Additionally, we put forward a model with highlights on the role of the balance between anthocyanin release and degradation in stability evaluations. Our goal is to engender updated insights into anthocyanin stability behavior under food processing conditions and provide a robust foundation for the development of anthocyanin stabilization strategies, expecting to promote more and deeper progress in this field.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Department of Food Science, College of Natural Sciences, University of Massachusetts Amherst, Massachusetts, The United States
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02797-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Musilová J, Franková H, Lidiková J, Vollmannová A, Bojňanská T, Jurítková J. The content of bioactive substances and their antioxidant effects in European blueberry (
Vaccinium myrtillus
L.) influenced by different ways of their processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Janette Musilová
- Institute of Food Sciences Faculty of Biotechnology and Food Sciences, SUA Nitra, Tr. A. Hlinku 2 Nitra Slovakia
| | - Hana Franková
- Institute of Food Sciences Faculty of Biotechnology and Food Sciences, SUA Nitra, Tr. A. Hlinku 2 Nitra Slovakia
| | - Judita Lidiková
- Institute of Food Sciences Faculty of Biotechnology and Food Sciences, SUA Nitra, Tr. A. Hlinku 2 Nitra Slovakia
| | - Alena Vollmannová
- Institute of Food Sciences Faculty of Biotechnology and Food Sciences, SUA Nitra, Tr. A. Hlinku 2 Nitra Slovakia
| | - Tatiana Bojňanská
- Institute of Food Sciences Faculty of Biotechnology and Food Sciences, SUA Nitra, Tr. A. Hlinku 2 Nitra Slovakia
| | - Jana Jurítková
- Private Joint School EDUCO Slanická osada 2178 Námestovo Slovakia
| |
Collapse
|
21
|
|