1
|
Espinales C, Romero-Peña M, Calderón G, Vergara K, Cáceres PJ, Castillo P. Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview. Heliyon 2023; 9:e14937. [PMID: 37025883 PMCID: PMC10070153 DOI: 10.1016/j.heliyon.2023.e14937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Waste processing from fish and seafood manufacturers represents a sustainable option to prevent environmental contamination, and their byproducts offer different benefits. Transforming fish and seafood waste into valuable compounds that present nutritional and functional properties compared to mammal products becomes a new alternative in Food Industry. In this review, collagen, protein hydrolysates, and chitin from fish and seafood byproducts were selected to explain their chemical characteristics, production methodologies, and possible future perspectives. These three byproducts are gaining a significant commercial market, impacting the food, cosmetic, pharmaceutical, agriculture, plastic, and biomedical industries. For this reason, the extraction methodologies, advantages, and disadvantages are discussed in this review.
Collapse
|
2
|
Soy-based yogurt-alternatives enriched with brewers’ spent grain flour and protein hydrolysates: Microstructural evaluation and physico-chemical properties during the storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules 2023; 28:molecules28031155. [PMID: 36770822 PMCID: PMC9919145 DOI: 10.3390/molecules28031155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Fish viscera are usually discarded as waste, causing environmental problems, or as low-value by-products. This study describes a self-sufficient and zero waste approach to obtain enzymes and protein hydrolysates from fish by-products. Firstly, recovery steps of viscera enzymatic extract were applied, and the resulting raw extract was stable at a pH range of 8-9 and at temperatures between 40 and 50 °C. The application of the extracted enzymes and alcalase on fish by-products hydrolysis was also determined. The selected conditions for the enzymatic hydrolysis were 10% (E/S) for 6 h using viscera enzymatic extract and 3% (E/S) for 2 h using alcalase. Fish protein hydrolysates (FPH) proved to have a notable antioxidant capacity with similar activity, ~11 mg ascorbic acid/g dry extract (ABTS assay) and ~150 mg Trolox/g dry extract (ORAC assay). FPH were also able to inhibit the angiotensin-converting enzyme, however, alcalase hydrolysates revealed a higher antihypertensive potential, IC50 of 101 µg of protein/mL. In general, FPH obtained by both enzymes systems maintained these bioactivities after the passage throughout a simulated gastrointestinal tract. The hydrolysates also displayed important technological properties, namely oil absorption capacity (~1 g oil/g sample) and emulsifying property (~40%). Therefore, it will be conceivable to use fish by-products based on a circular economy approach to generate added value compounds for animal and human nutrition.
Collapse
|
4
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Naibaho J, Jonuzi E, Butula N, Korzeniowska M, Föste M, Sinamo KN, Chodaczek G, Yang B. Fortification of milk-based yogurt with protein hydrolysates from brewers' spent grain: Evaluation on microstructural properties, lactic acid bacteria profile, lactic acid forming capability and its physical behavior. Curr Res Food Sci 2022; 5:1955-1964. [PMID: 36312882 PMCID: PMC9596745 DOI: 10.1016/j.crfs.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Current study aimed to evaluate the utilization of protein from brewers' spent grain (BSGP) on microstructural formation as well as rheological behavior, acidity and lactic acid bacteria (LAB) profile during the refrigerated storage. Three different BSGPs were provided including BSGP-C (extracted without enzymatic hydrolysis), BSGP-P (with protease), and BSGP-PF (with protease co-incubated with flavourzyme). The results demonstrated that BSGPs improved lactic acid forming capability in yogurt production to a higher level than milk-protein based enrichment. BSGPs improved the growth and survival of lactic acid bacteria (LAB), particularly BSGP-P in improving the survival rate of L. bulgaricus. Confocal laser scanning microscopy showed that BSGP-P generated a denser, softer and more homogenous surface appearance as well as showed the tendency to form more compact networks; had a weaker initial gel forming, increased and preserved the consistency of the yogurt during the storage. In conclusion, BSGPs in yogurt improved and preserved the textural properties, consistency, acidity and lactic acid bacteria. Protease-extracted preserve the flow behavior of yogurt Protease-extracted soften the microstructural surface of the matrices BSG protein-rich extracts improve the survival of lactic acid bacteria
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, State University of Tetova, 1200, Tetovo, Macedonia
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Karina Nola Sinamo
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sumatera Utara, 20155, Medan, Indonesia
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
6
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Chodaczek G, Yang B. The roles of brewers' spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Curr Res Food Sci 2022; 5:1195-1204. [PMID: 35992631 PMCID: PMC9382424 DOI: 10.1016/j.crfs.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetova, 1200, Tetovo, Macedonia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
7
|
Kakko T, Damerau A, Nisov A, Puganen A, Tuomasjukka S, Honkapää K, Tarvainen M, Yang B. Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis. Foods 2022; 11:foods11020230. [PMID: 35053963 PMCID: PMC8775156 DOI: 10.3390/foods11020230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Fractionation is a potential way to valorize under-utilized fishes, but the quality of the resulting fractions is crucial in terms of their applicability. The aim of this work was to study the quality of protein isolates and hydrolysates extracted from roach (Rutilus rutilus) and Baltic herring (Clupea harengus membras) using either pH shift or enzymatic hydrolysis. The amino acid composition of protein isolates and hydrolysates mostly complied with the nutritional requirements for adults, but protein isolates produced using pH shift showed higher essential to non-essential amino acid ratios compared with enzymatically produced hydrolysates, 0.84–0.85 vs. 0.65–0.70, respectively. Enzymatically produced protein hydrolysates had a lower total lipid content, lower proportion of phospholipids, and exhibited lower degrees of protein and lipid oxidation compared with pH-shift-produced isolates. These findings suggest enzymatic hydrolysis to be more promising from a lipid oxidation perspective while the pH-shift method ranked higher from a nutrient perspective. However, due to the different applications of protein isolates and hydrolysates produced using pH shift or enzymatic hydrolysis, respectively, the further optimization of both studied methods is recommended.
Collapse
Affiliation(s)
- Tanja Kakko
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Annelie Damerau
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Anni Nisov
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Anna Puganen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Saska Tuomasjukka
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Kaisu Honkapää
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Marko Tarvainen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
- Correspondence: ; Tel.: +358-452-737988
| |
Collapse
|
8
|
Camargo TR, Mantoan P, Ramos P, Monserrat JM, Prentice C, Fernandes CC, Zambuzzi WF, Valenti WC. Bioactivity of the Protein Hydrolysates Obtained from the Most Abundant Crustacean Bycatch. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:881-891. [PMID: 34714442 DOI: 10.1007/s10126-021-10072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The animals from bycatch of the shrimp fisheries can be a source of natural products and bioactive compounds. Thus, the present study aimed to evaluate the bioactivity of protein hydrolysates prepared from the two most abundant crabs from the bycatch of shrimp fisheries in Brazil (Callinectes ornatus and Hepatus pudibundus). Samples of C. ornatus and H. pudibundus were collected in the region of Ubatuba, State of São Paulo, Brazil. Muscles with small pieces of exoskeleton of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity was analyzed used three methods: DPPH, sulfhydryl groups, and peroxyl radicals. Additionally, the cytotoxicity of the hydrolysates was investigated using pre-osteoblasts cells. The results showed that the degree of hydrolysis (DH) of H. pudibundus was superior to DH of C. ornatus using both enzymes and was higher when using the enzyme Alcalase 2.4 L® (32.0% ± 1.9). The analysis suggested that the hydrolysates have antioxidant activity. Besides that, no cytotoxic effect was observed on cell viability. Thus, protein hydrolysates of C. ornatus and H. pudibundus have bioactivity, which add value to these bycatch species and suggests their potential use as nutraceutical ingredient in the food industry.
Collapse
Affiliation(s)
- Tavani R Camargo
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n 14884-900, Jaboticabal, SP, Brazil.
| | - Paulo Mantoan
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n 14884-900, Jaboticabal, SP, Brazil
| | - Patrícia Ramos
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, Aquaculture postgraduate, Rio Grande, RS, Brazil
| | - José M Monserrat
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, Aquaculture postgraduate, Rio Grande, RS, Brazil
- Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carlos Prentice
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, Aquaculture postgraduate, Rio Grande, RS, Brazil
| | - Célio C Fernandes
- Department of Chemical and Biological Sciences, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Sciences, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Wagner C Valenti
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n 14884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
9
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Rabiei S, Rezaei M, Nikoo M, Khezri M, Rafieian-Kopai M, Anjomshoaa M. Antioxidant properties of Klunzinger's mullet ( Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. FOOD SCI TECHNOL INT 2021; 28:233-246. [PMID: 33832340 DOI: 10.1177/10820132211005297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antioxidant activity of Klunzinger's mullet (Liza klunzingeri) muscle hydrolysates obtained using Bacillus licheniformis fermentation and enzymatic hydrolysis was determined. Hydrolysates obtained after 6 days of fermentation with B. licheniformis showed the highest free radical scavenging activity, metal chelating ability and ferric reducing antioxidant power (FRAP) (P ≤ 0.05). Microbial fermentation led to a higher percentage of small peptides and higher solubility compared with Alcalase hydrolysis (P ≤ 0.05). Hydrolysates showing the highest antioxidant properties attenuated serum, liver, and kidney oxidative stress biomarkers in male Wister rats stressed by carbon tetrachloride (P ≤ 0.05). At 300 mg/kg oral administration, hydrolysates increased serum, renal, and hepatic total antioxidant capacity (TAC) (P ≤ 0.05) and reduced their elevated levels of malondialdehyde (MDA), nitric oxide (NO•), and serum liver enzymes (AST, ALP, and ALT) (P ≤ 0.05). The hydrolysates were able to ameliorate hepatic damage by reducing necrosis, fatty changes, and inflammation. Results showed the antioxidant and hepato-toxic protective activities of Klunzinger's mullet muscle hydrolysates obtained using microbial fermentation, which may, therefore, potentially be considered as a functional food ingredient.
Collapse
Affiliation(s)
- Sana Rabiei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Mohammad Khezri
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Kurdistan, Iran
| | - Mahmoud Rafieian-Kopai
- Medical Plants Research Center, Basic Health Sciences Institutes, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoaa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|