1
|
Cao J, Zhao H, Peng Z, Yang B, Xu H, Cheng J, Wang H. The effects of non-covalent interaction between rice glutelin and gum arabic on digestibility and stability of perilla oil emulsion. Food Chem 2025; 479:143726. [PMID: 40088649 DOI: 10.1016/j.foodchem.2025.143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
This study investigated the formation formation mechanism of rice glutelin (RG)-gum arabic (GA) complex using multispectral techniques and molecular simulations. RG-GA-perilla oil (PO) emulsions were constructed, and their microstructure, emulsifying, rheological, stability, and digestion properties were systematically evaluated. Turbidity and ζ-potential showed effective RG-GA complexation at pH 3.5, with GA concentration influencing their electrostatic interactions. Multispectral and molecular docking demonstrated that RG and GA interacted through hydrophobic and hydrogen bonding. RG's secondary structure from an α-helix/random coil to β-sheet/β-turn, establishing ordered conformation. At 1.5 w% GA, RG-GA-PO emulsion exhibited reduced particle size and uniform droplet distribution.The emulsions displayed enhanced emulsifying and rheological properties, along with improved stability against thermal processing, freeze-thaw and oxidation. In vitro digestion studies revealed that 1.5 w% GA contributed to PO stability during gastric digestion by inhibiting RG degradation. The RG-GA complex facilitated PO release in small intestine, with a maximum FAA release rate of 58.06 ± 3.83 %.
Collapse
Affiliation(s)
- Jia Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyue Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Zhu J, Zhu Y, Li H, Fu C, Yin W, Li C. Thawing methods affect quality properties and protein denaturation of frozen beef. Food Chem 2025; 476:143484. [PMID: 39987809 DOI: 10.1016/j.foodchem.2025.143484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Balancing efficiency and meat quality during thawing remains a big challenge for meat industry. In this study, the effects of three thawing methods, including ultrasound-assisted thawing (UT), solid-state microwave thawing (SMT) and traditional air thawing (CT) on the thawing features, quality attributes and protein physicochemical properties of beef in a pilot scale, were investigated. COMSOL Multiphysics simulation was employed to optimize the thawing process, identifying an optimal endpoint of no more than -2 °C. Results showed that optimized SMT helpfully avoided overheating, improved thawing efficiency and kept better water-holding capacity, microstructure and lower oxidation. In contrast, UT maintained better protein conformation and color, especially in a* value, but serious mechanical damage caused worse texture and aggravated protein oxidation, which limited its application. Thus, SMT could be a promising solution for industrial meat thawing applications.
Collapse
Affiliation(s)
- Jiaying Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingying Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou, Jiangsu, China
| | - Hui Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caili Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Weimin Yin
- Shanghai Dotwil Intelligent Technology Co., Ltd., Suzhou, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Zheng H, Huang C, Liu S, Chen X, Wang X, Hu P. Effect of ultrasound treatment on the oxidation and conformational structure of myofibrillar protein of beef marinated in red sour soup. Meat Sci 2025; 224:109779. [PMID: 39985875 DOI: 10.1016/j.meatsci.2025.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
In this study, we investigated the oxidative and structural effects of red sour soup and ultrasound-assisted marination on beef myofibrillar proteins (MPs). The results demonstrated that marinating with red sour soup could alter MPs structure and oxidative properties, promote MPs aggregation, and increase protein particle size. Compared to traditional static marination, ultrasound-assisted marination significantly elevated protein oxidation levels (P < 0.05), as shown by the increase in carbonyl and reduction in sulfhydryl (P < 0.05). Secondary and tertiary protein structures revealed that ultrasound decreased the α-helix and increased the β-sheet, promoting the exposure of hydrophobic groups. Particle size significantly decreased with increasing ultrasound power (P < 0.05). The SDS-PAGE further illustrated that appropriate ultrasound treatment (320 W) alleviated protein cross-linking and aggregation induced by organic acids. Overall, this study showed that ultrasound ameliorated the effects on protein structure during marinating due to the acidic conditions of red sour soup, offering a theoretical foundation for its application in meat processing.
Collapse
Affiliation(s)
- Huaisheng Zheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaobin Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuhong Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xinghua Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyu Wang
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Zhu M, Jiang L, Liu W, Li H, Jiao L, Ma H, Gao X, Kang Z. Analysis of the influencing mechanism of low-frequency alternating magnetic field-assisted freezing on oxidative and structural attributes of pork myofibrillar proteins based on proteomic changes. Food Chem 2025; 469:142537. [PMID: 39708654 DOI: 10.1016/j.foodchem.2024.142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Using quantitative proteomics, the study investigated the effects of low-frequency alternating magnetic field-assisted freezing (LF-MFF) on the oxidative status and structural integrity of porcine myofibrillar proteins (MPs). LF-MFF, especially at 3 mT (LF-MFF-3) and 4 mT (LF-MFF-4), significantly reduced MPs' oxidation compared to refrigerator freezing (RF) (P < 0.05). The spectroscopic analysis confirmed better structural preservation with LF-MFF-4. We identified 126 differentially abundant proteins (DAPs) associated with key metabolic pathways, including amino acid biosynthesis and oxidative phosphorylation, potentially affecting Adenosine Triphosphate (ATP) metabolism and contributing to freeze-induced protein damage and oxidative denaturation of MPs. Through correlation analysis, among the 52 DAPs in the LF-MFF-4 vs RF comparison, eight proteins with variable importance in projection (VIP) > 1.1 were identified as potential biomarkers for porcine MPs. These findings enhance our understanding of the oxidative and structural changes in MPs following LF-MFF, suggesting its potential for improving pork quality and meat preservation.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang 453003, China.
| | - Lijie Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xueli Gao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
5
|
Jiang L, Liu D, Wang W, Lv R, Yu S, Zhou J. Advancements and perspectives of novel freezing and thawing technologies effects on meat: A review. Food Res Int 2025; 204:115942. [PMID: 39986786 DOI: 10.1016/j.foodres.2025.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Freezing is an effective method to extend the shelf life of meat. Traditional slow freezing technologies tend to damage muscle cells due to the formation of large ice crystals. Before further processing, frozen meat needs to undergo a thawing process. Traditional thawing technologies require long thawing times, which may increase the drip loss and accelerate the bacterial growth rate. Quality deterioration and nutrient reduction are common problems in frozen meat. To produce high-quality frozen meat, novel freezing and thawing technologies have been developed constantly over the past decades. This review investigated the effects of eight novel freezing technologies and seven novel thawing technologies on frozen meat quality. Novel freezing technologies with rapid freezing rates contribute to forming small and uniformly distributed ice crystals, thereby reducing the damage to muscle cells. Some novel thawing technologies increase the thawing efficiency by exposing the meat to energy fields to heat all parts of the meat concurrently. Additionally, the principles of these technologies are summarized. Single-method freezing and thawing have limitations in preserving the quality of fresh meat. Therefore, this review also discussed the potential application of combined freezing/thawing technologies, which can better maintain moisture distribution, reduce color and texture changes, and lower lipid and protein oxidation. Many challenges remain in the exploitation of novel freezing/thawing technologies. Further research could focus on investigating the mechanisms and industrial applications of these technologies, establishing models to describe freezing/thawing processes, and exploring different freezing/thawing equipment based on differences in myofibril structure and tissue moisture content.
Collapse
Affiliation(s)
- Ling Jiang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Songfeng Yu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
6
|
Liu Y, Li H, Li M, Liu L, Lu K, Bi S, Zhou M, Chen L, Lan L, Wei M, Zhou Y, Zhu Q. Study on protein hydrolysis and microbial community changes during the fermentation of pork loin ham mediated by electrical stimulation. Food Res Int 2025; 201:115640. [PMID: 39849783 DOI: 10.1016/j.foodres.2024.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study explored the effect of electrical stimulation (ES) and Pediococcus pentosaceus LL-07 (P. pentosaceus LL-07) and Staphylococcus simulans QB7 (S. simulans QB7) on the quality and microbial community of loin ham during the ripening. After the ES and starter culture treatments, the Aw and pH were decreased. Surface hydrophobicity, myogenic fiber fragmentation index (MFI), TCA-soluble peptide, amino nitrogen and free amino acids (FAAs) were also significantly higher than the control group (CK) (P < 0.05). This increase was more significant in the E-S group (electrical stimulation followed by inoculation with P. pentosaceus LL-07 and S. simulans QB7) than the rest of the experimental group (E、S、S-E group). Furthermore, the CK and E-S groups were subjected to a bacterial community comparison experiment. The microbial diversity of these two groups was increased. Pediococcus spp. and Staphylococcus spp. became the dominant bacteria in E-S groups during the ripening. Correlation analyses show a strong correlation between protein hydrolysis, microorganisms and FAAs. In conclusion, the combination of ES and starter culture could promote protein hydrolysis, the accumulation of FAAS, and improves the bacterial community of loin ham.
Collapse
Affiliation(s)
- Yehua Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Province Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Kuan Lu
- Guizhou Biotechnology Research and Development Base Co., Ltd., Guiyang 550002, Guizhou, China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Mixin Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Lisha Lan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Minping Wei
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China.
| |
Collapse
|
7
|
Zhang Y, Liu G. Electrostatically-enhanced two-stage low-temperature tempering: Effects on the quality of frozen tan mutton. Food Chem X 2024; 24:101926. [PMID: 39525067 PMCID: PMC11550020 DOI: 10.1016/j.fochx.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The two-stage low-temperature tempering (TLT) and TLT assisted by electrostatic fields (TLT-1500/2000/2500/3000) were developed to investigate their effects on the quality of frozen Tan mutton. The results demonstrated that both TLT and TLT-1500/2000/2500/3000 significantly (P < 0.05) enhanced the tempering rate compared to refrigerator tempering (4 °C, RT). The analysis of tempering, cooking, and centrifugal losses, along with the evaluation of electrical conductivity, pH, and TVB-N, showed that the water retention capacity and freshness of Tan mutton treated with TLT-2500 were closest to those of fresh Tan mutton. Scanning electron microscopy analysis demonstrated that TLT-2500 best maintained the tissue integrity of Tan mutton, while low-field nuclear magnetic resonance analysis revealed it contained the highest immobile water and least free water. Furthermore, Tan mutton treated with TLT-2000 and TLT-2500 exhibited minimal lipid oxidation and color change. In contrast, the most significant changes in all indicators were observed after RT.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
8
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Ultrasound-assisted plasma-activated water thawing of porcine longissimus dorsi: Effects on physicochemical, thermal stability, rheological, and structural properties of myofibrillar protein. Food Chem 2024; 459:140430. [PMID: 39024870 DOI: 10.1016/j.foodchem.2024.140430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on the physicochemical, thermal stability, rheological, and structural properties of porcine longissimus dorsi myofibrillar protein (MP). UPT treatment significantly improved protein solubility (73.10%) and reduced protein turbidity (0.123) compared with AT, WT, and PT treatments (P < 0.05). UPT treatment reduced the MP particle size (635.50 nm) and zeta potential (-6.38 mV) compared with AT and WT treatments (P < 0.05), which was closer to that of the fresh sample. UPT treatment also maintained the MP surface hydrophobicity and thermal stability. UPT treatment improved the MP rheological properties of the sample. In addition, UPT treatment effectively protected the MP secondary and tertiary structures. In conclusion, UPT treatment better maintained the MP physicochemical, thermal stability, rheological, and structural properties of thawed porcine longissimus dorsi. Therefore, UPT treatment can be considered as an effective thawing method.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Peng Z, Wang F, Yu L, Jiang B, Cao J, Sun Z, Cheng J. Effect of ultrasound on the characterization and peptidomics of foxtail millet bran protein hydrolysates. ULTRASONICS SONOCHEMISTRY 2024; 110:107044. [PMID: 39186917 PMCID: PMC11396073 DOI: 10.1016/j.ultsonch.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Protein hydrolysates have attracted much attention for their high biological activity and are a crucial product form for the utilization of foxtail millet bran by-products. In this study, changes in the structure, functionality, activity and peptide profile of foxtail millet bran protein hydrolysates (FMBPHs) at different ultrasound powers (0 - 600 W) were investigated. The results showed that ultrasound promoted the transformation of α-helix and β-sheet to random coils and β-turn, and the exposure of hydrophobic groups and sulfhydryl groups in FMBPHs. The average particle size of the samples decreased, and the absolute value of the ζ-potential increased significantly. Simultaneously, smaller porous particles and loose fragments appeared on the surface of FMBPHs when the ultrasonic power was increased to 450 W. Additionally, 450 W ultrasound treatment improved solubility, foaming properties, emulsifying properties, thermal stability of FMBPHs. The DPPH, ABTS and hydroxyl radical scavenging ability (IC50, 2.65, 1.06 and 3.02 mg/mL), Fe2+ chelating activity (IC50, 2.62 mg/mL), and reducing power of the samples were also enhanced. The peptidomics results demonstrated that ultrasonication increased the number of active peptides in the hydrolysate, and the relative abundance of 17 active peptides was obviously elevated at 450 W. Peptide map analysis showed that ultrasound-induced structural modifications affected the peptide profiles of Ubiquitin-like domain-containing protein, Cupin type-1 domain-containing protein, 40S ribosomal protein S19, and Oleosin 1, showing changes in the abundance of certain peptides, which may be related to changes in the characterization of FMBPHs.
Collapse
Affiliation(s)
- Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Luming Yu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Bo Jiang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jia Cao
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhigang Sun
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
11
|
Zhang Y, Li Y, Guo J, Feng Y, Xie Q, Guo M, Yin J, Liu G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem 2024; 456:140001. [PMID: 38852449 DOI: 10.1016/j.foodchem.2024.140001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
12
|
Tian F, Chen W, Gu X, Guan W, Cai L. Thawing of Frozen Hairtail ( Trichiurus lepturus) with Graphene Nanoparticles Combined with Radio Frequency: Variations in Protein Aggregation, Structural Characteristics, and Stability. Foods 2024; 13:1632. [PMID: 38890861 PMCID: PMC11171875 DOI: 10.3390/foods13111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient thawing can preserve the quality of frozen hairtail (Trichiurus lepturus) close to that of fresh hairtail. In contrast to air thawing (AT) and radio-frequency thawing (RT), this study looked at how graphene oxide (GO) and graphene magnetic (GM) nanoparticles paired with RT affect the microstructure and protein conformation of hairtails after thawing. The results suggested that GM-RT can reduce the myofibrillar protein (MP) damage and be more effective than other thawing treatments, like AT, RT, and GO-RT, in maintaining the microstructure of hairtail. The particle size and zeta potential showed that GM-RT could reduce the aggregation of MP during the thawing process compared to other thawing methods. Moreover, the texture of the hairtail after GM-RT exhibited higher hardness (1185.25 g), elasticity (2.25 mm), and chewiness (5.75 mJ) values compared to other thawing treatments. Especially compared with RT, the GM-RT treatment displayed significant improvements in hardness (27.24%), a considerable increase in springiness (92.23%), and an increase in chewiness (57.96%). GO-RT and GM-RT significantly reduced the centrifugal loss. The scanning electron microscopy results demonstrated that the effect of GM-RT was more akin to that of a fresh sample (FS) and characterized by a well-organized microstructure. In conclusion, GM-RT effectively diminished the MP aggregation and improved the texture of thawed fish. It can be regarded as a viable alternative thawing technique to enhance MP stability, which is vital for preserving meat quality.
Collapse
Affiliation(s)
- Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
| | - Wenyuchu Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Weiliang Guan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
- School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
13
|
Lang Y, Wang M, Zhou S, Han D, Xie P, Li C, Yang X. Fabrication, characterization and emulsifying properties of myofibrillar protein-chitosan complexes in acidic conditions. Int J Biol Macromol 2024; 262:130000. [PMID: 38331058 DOI: 10.1016/j.ijbiomac.2024.130000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Polysaccharides are employed to modify proteins, forming complexes that enhance the functional properties of proteins, such as emulsification and stability. In this study, myofibrillar protein (MP)-chitosan (CS) complexes were formed between CS and MP under acidic conditions (pH 3.0-6.0). Results showed that CS can improve the solubility and emulsifying properties of MP, and the MP-CS complexes at pH 3.0 and 6.0 had better emulsifying properties. Concurrently, the particle size results indicated that better the emulsifying properties of the complex, the smaller the particle size. Consequently, the characteristics of the MP-CS complexes (at pH 3.0 and 6.0) were investigated. Our analysis using Fourier transform infrared spectroscopy revealed that the amide I band of MP was blue-shifted with the addition of CS, signifying a decrease in hydrogen bonding within MP. The endogenous fluorescence spectra showcased that the hydrophobicity surrounding the tryptophan residues in the protein changed, leading to enhanced polarity. Thermogravimetric analysis and differential scanning calorimetry further confirmed that the addition of CS improved the thermal stability of MP. These findings provide valuable insights into the interactions between MP and CS. Furthermore, the MP-CS complex can be leveraged to create a Pickering emulsion system for the efficient delivery of bioactive substances.
Collapse
Affiliation(s)
- Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China.
| | - Mingru Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Shasha Zhou
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Peng Xie
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100080, China
| | - Cuiping Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China.
| |
Collapse
|
14
|
Wang R, Guo F, Zhao J, Feng C. Myofibril degradation and structural changes in myofibrillar proteins of porcine longissimus muscles during frozen storage. Food Chem 2024; 435:137671. [PMID: 37813022 DOI: 10.1016/j.foodchem.2023.137671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
The effect of frozen time and the temperature on myofibril degradation and the structure of myofibrillar proteins of porcine longissimus muscles were investigated. With extended frozen time and increased temperature, the muscle fibres became broken; the muscle cells became irregularly arranged; and the fragmentation index value, number of ionic bonds, and number of hydrogen bonds of the samples significantly decreased. Meanwhile, the myofibril fragmentation index value, number of hydrophobic interactions, and number of disulphide bonds significantly increased (P < 0.05). After 12 months of storage, the intensities of I760/I1003, I850/I830, I1450/I1003, and I2945/I1003 in the samples frozen at -8 °C were reduced by 4.36 %, 1.28 %, 1.86 %, and 0.74 %, respectively. A reduction in the maximum absorption peak and a red shift were observed in the ultraviolet spectrum. Therefore, frozen storage resulted in significant damage to the tissue microstructureand caused accelerated protein degradation, and the loss of protein structural integrity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Fang Guo
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Jianying Zhao
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Caiping Feng
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
15
|
Zhang R, Realini CE, Kim YHB, Farouk MM. Challenges and processing strategies to produce high quality frozen meat. Meat Sci 2023; 205:109311. [PMID: 37586162 DOI: 10.1016/j.meatsci.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Freezing is an effective means to extend the shelf-life of meat products. However, freezing and thawing processes lead to physical (e.g., ice crystals formation and freezer burn) and biochemical changes (e.g., protein denaturation and lipid oxidation) in meat resulting in loss of quality. Over the last two decades, several attempts have been made to produce thawed meat with qualities similar to that of fresh meat to no avail. This is due to the fact that no single technique exists to date that can mitigate all the quality challenges caused by freezing and thawing. This is further confounded by the consumer perception of frozen meat as lower quality compared to equivalent fresh-never-frozen meat cuts. Therefore, it remains challenging for the meat industry to produce high quality frozen meat and increase consumer acceptability of frozen products. This review aimed to provide an overview of the applications of novel freezing and thawing technologies that could improve the quality of thawed meat including deep freezing, high pressure, radiofrequency, electro-magnetic resonance, electrostatic field, immersion solution, microwave, ohmic heating, and ultrasound. This review will also discuss the development in processing strategies such as optimising the ageing of meat pre- or post-freezing, and the integration of freezing and thawing in one process/regime to collapse the difference in quality between thawed meat and fresh-never-frozen equivalents.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| |
Collapse
|
16
|
Fan JC, Liu GH, Wang K, Xie C, Kang ZL. Effects of Potassium Bicarbonate on Gel, Antioxidant and Water Distribution of Reduced-Phosphate Silver Carp Surimi Batter under Cold Storage. Gels 2023; 9:836. [PMID: 37888409 PMCID: PMC10606452 DOI: 10.3390/gels9100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The changes in storage loss, water distribution status, gel characteristics, thiobarbituric acid reactive substances (TBARSs), total volatile basic nitrogen, and total plate count of cooked reduced-phosphate silver carp surimi batter during cold storage at 4 °C were investigated. The storage loss, content of free water, pH, hardness, TBARSs, total volatile basic nitrogen value, and total plate count of all cooked silver carp surimi batters significantly increased (p < 0.05) with an increase in cold storage time. Meanwhile, the content of immobilized water, whiteness, springiness, and cohesiveness significantly decreased (p < 0.05). At the same cold storage time, the sample of cooked reduced-phosphate silver carp surimi batter had lower water mobility, darker color, and better texture characteristics than the cooked silver carp surimi batter without potassium bicarbonate; however, the values of TBARSs, total volatile basic nitrogen, and total plate count were not significantly different (p > 0.05). This meant that there was no difference between potassium bicarbonate and sodium tripolyphosphate in antioxidant and antibacterial activity during the cold storage of silver carp surimi batter. To summarize, the use of potassium bicarbonate instead of sodium tripolyphosphate could produce cooked reduced-phosphate silver carp surimi batter with better water-holding capacity and gel characteristics during cold storage.
Collapse
Affiliation(s)
- Jing-Chao Fan
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Guang-Hui Liu
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Kai Wang
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Chun Xie
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Zhuang-Li Kang
- College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
17
|
Ying JP, Wu G, Zhang YM, Zhang QL. Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Sci 2023; 204:109258. [PMID: 37379704 DOI: 10.1016/j.meatsci.2023.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Antibacterial mechanism of bacteriocins against foodborne S. aureus is still to be explored, particularly in proteomics, and a deep and comprehensive study on application of bacteriocins for preservation of raw pork is required. Here, proteomic mechanism of Lactobacillus salivarius bacteriocin XJS01 against foodborne S. aureus 2612:1606BL1486 (S. aureus_26) and its preservation effect on raw pork loins stored at 4 °C for 12 days was investigated. The results showed that 301 differentially abundant proteins (DAPs) were identified between XJS01-treated and -free groups (control group) using Tandem mass tag (TMT) quantitative proteomics technology, which were primarily involved in amino acids and carbohydrate metabolism, cytolysis, defense response, cell apoptosis, cell killing, adhesion, and oxygen utilization of S. aureus_26. Bacterial secretion system (SRP) and cationic antimicrobial peptide resistance may be key pathways to maintain protein secretion and counteract the deleterious effects on S. aureus_26 caused by XJS01. In addition, XJS01 could significantly improve the preservation of raw pork loins by the evaluation results of sensory and antibacterial activity on the meat surface. Overall, this study showed that XJS01 induced a complex organism response in S. aureus, and it could be potential pork preservative.
Collapse
Affiliation(s)
- Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China.
| |
Collapse
|
18
|
Zhu M, Xing Y, Zhang J, Li H, Kang Z, Ma H, Zhao S, Jiao L. Low-frequency alternating magnetic field thawing of frozen pork meat: Effects of intensity on quality properties and microstructure of meat and structure of myofibrillar proteins. Meat Sci 2023; 204:109241. [PMID: 37321052 DOI: 10.1016/j.meatsci.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to evaluate the changes in quality properties and microstructure of pork meat as well as structural variation in myofibrillar proteins (MPs) after low-frequency alternating magnetic field thawing (LF-MFT) with different intensities (1-5 mT). LF-MFT at 3-5 mT shortened the thawing time. LF-MFT treatment significantly influenced the quality properties of meat and notably improved the structure of MPs (P < 0.05), compared to atmosphere thawing (AT). Especially, among the thawing treatments, LF-MFT-4 (LF-MFT at 4 mT) had the lowest values of thawing loss and drip loss, and the least changes in the color and myoglobin content. Regarding the results of rheological properties and micrographs, an optimal gel structure and a more compact muscle fiber arrangement formed during LF-MFT-4. Moreover, LF-MFT-4 was beneficial for improving the conformation of MPs. Therefore, LF-MFT-4 reduced the deterioration of porcine quality by protecting MPs structure, indicating a potential use in the meat thawing industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - Yi Xing
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
19
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
20
|
Xu C, Lu J, Zeng Q, Zhang J, Dong L, Huang F, Shen Y, Su D. Magnetic nanometer combined with microwave: Novel rapid thawing promotes phenolics release in frozen-storage lychee. Food Chem 2023; 410:135384. [PMID: 36610094 DOI: 10.1016/j.foodchem.2022.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Magnetic nanometer combined with microwave thawing (MN-MT) could become a novel solution to challenges uneven and overheating of microwave thawing (MT), while retaining high thawing efficiency, compared to conventional water immersion thawing (WT). In this study, MN-MT was applied to thaw fruit (lychee as an example) for the first time, and was evaluated by comparison with WT, MT and water immersion combined with microwave thawing (WI-MT). Results showed that MN-MT could significantly shorten the thawing time of frozen lychee by 80.67%, 25.86% and 18.83% compared to WT, MT and WI-MT, respectively. Compared to WT, MN-MT was the only thawing treatment which significantly enhanced the release of quercetin-3-O-rutinose-7-O-α-l-rhamnoside, according to HPLC-DAD. Meanwhile, thermal-sensitive procyanidin B2, phenylpropionic acid and protocatechuic acid were found to be protected from degradations only by MN-MT based on UPLC-ESI-QTOF-MS/MS results. In summary, MN-MT is a potential novel treatment for rapid thawing and quality maintenance of frozen fruits.
Collapse
Affiliation(s)
- Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jiaming Lu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yingbin Shen
- School of Life Science, Guangzhou University, Guangzhou 510006, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
22
|
Hu R, Zhang M, Jiang Q, Law CL. A novel infrared and microwave alternate thawing method for frozen pork: Effect on thawing rate and products quality. Meat Sci 2023; 198:109084. [PMID: 36599205 DOI: 10.1016/j.meatsci.2022.109084] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The effect of infrared and microwave alternate thawing (IR + MWT) on frozen pork were compared to fresh, air thawing (AT), infrared thawing (IRT), microwave thawing (MWT). The IR + MWT took only about 11.81 min of the thawing time compared to AT 66.5 min, and the Raman spectroscopy and Low-field nuclear magnetic resonance (LF-NMR) results showed that the IR + MWT maintained better protein secondary structure composition and moisture state compared to MWT and IRT. In terms of thawing losses, IR + MWT had the lowest loss 1.92%. In terms of texture, IR + MWT had the least effect on the post-thawing textural properties and increased the springiness of the meat. Scanning electron microscopy results also showed that there was reduced damage to the muscle structure with IR + MWT. Regarding the odor of the meat after thawing, IR + MWT retained the odor better and was closer to the fresh sample. Therefore, IR + MWT can be used to enhance the thawing rate to protect the quality of the thawed pork.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
23
|
Effects of pre-emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced-animal fat pork batter. Meat Sci 2023; 198:109087. [PMID: 36628894 DOI: 10.1016/j.meatsci.2022.109087] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this work, the differences in macrostructure and microstructure, rheology, and storage stability of pre-emulsified safflower oil (PSO) prepared by natural and magnetic field modified soy 11S globulin were analysised. It was concluded that the PSO with magnetic field modified soy 11S globulin (MPSO) has better emulsifying activity and physical stability. The changes in gel quality, oxidational sensitivity, rheological, and sensory properties of pork batters with different substitute ratios (0%, 25%, 50%, 75%, and 100%) of pork back-fat by MPSO with magnetic field modified soy 11S globulin were studied. Compared to the sample without MPSO, pork batter with MPSO showed higher emulsion stability, apparent viscosity, L⁎ value, springiness, cohesiveness, and expressible moisture, while lower a⁎ value and cooking loss. Moreover, added MPSO could be more uniformly distributed into the meat matrix with smaller holes. With the increase in the replacement proportion of pork back-fat, the hardness, water- and fat-holding capacity, and P21 of pork batter significantly decreased (P < 0.05). As revealed by sensory evaluation and TBARS, using MPSO to substitute for pork back-fat decreased the lipid oxidational sensitivity of pork batter, and without negative effects on the appearance, juiciness and overall acceptability. Overall, it is feasible to apply MPSO as a pork-fat replacer to produce reduced-animal fat pork batter with excellent gel and sensory properties.
Collapse
|
24
|
Feng F, Yin Y, Zhou L, Ma C, Zhang W. Effect of Nitric Oxide and Its Induced Protein S-Nitrosylation on the Structures and In Vitro Digestion Properties of Beef Myofibrillar Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2532-2540. [PMID: 36700649 DOI: 10.1021/acs.jafc.2c07804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the effects of nitric oxide (NO) and its induced protein S-nitrosylation on the structures and digestion properties of beef myofibrillar protein (MP). The MP was treated with 0, 50, 250, 500, and 1000 μM concentrations of NO-donor S-nitrosoglutathione (GSNO) for 30 min at 37 °C. The results indicated that GSNO treatment significantly decreased the sulfhydryl contents whereas the carbonyl contents increased. Meanwhile, compared with the control group, the surface hydrophobicity, the intrinsic fluorescence intensity, and the α-helix content of proteins were decreased significantly with the enhancement of GSNO concentrations. In addition, 250 μM GSNO treatment increased the gastric digestibility of MP, while the gastrointestinal digestibility and the release of peptides were both inhibited by 500 and 1000 μM GSNO treatments. These data demonstrate that protein S-nitrosylation can affect the in vitro digestion properties of proteins by altering the physicochemical properties and structure of MP.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
25
|
Zhu W, Guo H, Han M, Shan C, Bu Y, Li J, Li X. Evaluating the effects of nanoparticles combined ultrasonic-microwave thawing on water holding capacity, oxidation, and protein conformation in jumbo squid (Dosidicus gigas) mantles. Food Chem 2023; 402:134250. [DOI: 10.1016/j.foodchem.2022.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
26
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
27
|
Xie H, Zhang L, Chen Q, Hu J, Zhang P, Xiong H, Zhao Q. Combined effects of drying methods and limited enzymatic hydrolysis on the physicochemical and antioxidant properties of rice protein hydrolysates. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Lan W, Chen X, Zhao Y, Xie J. The effects of tea polyphenol-ozonated slurry ice treatment on the quality of large yellow croaker (Pseudosciaena crocea) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7052-7061. [PMID: 35690887 DOI: 10.1002/jsfa.12066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The aim of the current study was to evaluate the synergistic effects of tea polyphenol-ozonated slurry ice on the quality, physicochemical and protein characteristics of large yellow croaker (Pseudosciaena crocea) during chilled (4 °C) storage. To 0.3% tea polyphenol combined with ozone water was added sodium chloride until the salt concentration reached 3.3% and with the use of an ice machine the mixture formed the tea polyphenol-ozonated slurry ice. Microbial [total viable count (TVC)], physicochemical [total volatile basic nitrogen (TVB-N), K value], myofibrillar fragmentation index (MFI), Ca2+ -ATPase activity, total sulfhydryl content, intrinsic fluorescence intensity (IFI), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were analyzed during chilled (4 °C) storage for up to 20 days. RESULTS The results showed that tea polyphenol-ozonated slurry ice could effectively inhibit the increase of TVC and TVB-N, reduce the degree of adenosine triphosphate (ATP) degradation. In addition, the tea polyphenol-ozonated slurry ice treatment could protect the integrity of myosin in myofibrillar proteins (MPs) by inhibiting the decrease of Ca2+ -ATPase activity and the content of total sulfhydryl. Furthermore, the tea polyphenol-ozonated slurry ice presented a superiorly protective effect on protein structure in MPs as manifested by the results of IFI, FTIR and SDS-PAGE. It was possible that due to the addition of tea polyphenol, the antioxidant activity of this complex was significantly improved. CONCLUSION The tea polyphenol-ozonated slurry ice treatment can maintain the quality of large yellow croaker by decreasing the damage of MP caused by the interaction between microorganisms and endogenous enzymes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanan Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
29
|
Foaming and Physicochemical Properties of Commercial Protein Ingredients Used for Infant Formula Formulation. Foods 2022; 11:foods11223710. [PMID: 36429303 PMCID: PMC9689407 DOI: 10.3390/foods11223710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Protein, as one of the main ingredients for infant formula, may be closely related to the undesirable foam formed during the reconstitution of infant formula. Demineralized whey powder (D70 and D90), whey protein concentrate (WPC), and skimmed milk powder (SMP) are the four protein ingredients commonly used in infant formula formulation. The foaming and physicochemical properties of these four protein ingredients from different manufacturers were analyzed in the present study. Significant differences (p < 0.05) in foaming properties were found between the samples from different manufacturers. SMP showed a highest foaming capacity (FC) and foam stability (FS), followed by D70, D90, and WPC. Although the protein composition was similar based on reducing SDS-PAGE, the aggregates varied based on non-reducing SDS-PAGE, probably resulting in the different foaming properties. Particle size, zeta potential, and solubility of the protein ingredients were assessed. The protein structure was evaluated by circular dichroism, surface hydrophobicity, and free sulfhydryl. Pearson’s correlation analysis demonstrated that FC and FS were positively correlated with random coil (0.55 and 0.74), β-turn (0.53 and 0.73), and zeta potential (0.55 and 0.51) but negatively correlated with β-strand (−0.56 and −0.71), free sulfhydryl (−0.56 and −0.63), particle size (−0.45 and −0.53), and fat content (−0.50 and −0.49). The results of this study could provide a theoretical guidance for reducing formation of foam of infant formula products during reconstitution.
Collapse
|
30
|
Effects of lysine and arginine addition combined with high-pressure microfluidization treatment on the structure, solubility, and stability of pork myofibrillar proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Xin WG, Wu G, Ying JP, Xiang YZ, Jiang YH, Deng XY, Lin LB, Zhang QL. Antibacterial activity and mechanism of bacteriocin LFX01 against Staphylococcus aureus and Escherichia coli and its application on pork model. Meat Sci 2022; 196:109045. [DOI: 10.1016/j.meatsci.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022]
|
32
|
Improving modification of structures and functionalities of food macromolecules by novel thermal technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Zhu M, Li H, Xing Y, Ma C, Peng Z, Jiao L, Kang Z, Zhao S, Ma H. Understanding the influence of fluctuated low-temperature combined with high-humidity thawing on gelling properties of pork myofibrillar proteins. Food Chem 2022; 404:134238. [DOI: 10.1016/j.foodchem.2022.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
34
|
Li Y, Bu Y, Guo H, Zhu W, Li J, Li X. The drip loss inhibitory mechanism of nanowarming in jumbo squid (Dosidicus gigas) mantles: protein structure and molecular dynamics simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4313-4321. [PMID: 35043406 DOI: 10.1002/jsfa.11783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The magnetic nanoparticles plus microwave thawing (MNPMT), a new rewarming technology entitled 'nanowarming', can serve as an effective method to achieve rapid and uniform thawing, thus reducing drip loss. The purpose of this study was to decipher the drip loss inhibitory mechanism of MNPMT in jumbo squid (Dosidicus gigas) from the perspectives of protein structure and ice crystal recrystallization. A number of different techniques such as dynamic rheology, Raman spectra, intrinsic fluorescence measurement, and ultraviolet (UV) absorption spectra were conducted to analyze myofibrillar protein conformation and stability of jumbo squid. Scanning electron microscopy (SEM) and myofibrillar fragmentation index (MFI) were used to observe the growth of ice crystals. The interaction between magnetic nanoparticles (MNPs) and ice crystals was studied by using molecular dynamic (MD) simulation. RESULTS MNPMT exhibited the highest storage modulus (G') value at 90 °C, suggesting the protein conformation was more stable. The increase in α-helices, fluorescence intensity and characteristic absorption peak of MNPMT illustrated that MNPMT can effectively maintain the secondary and tertiary structure of the protein. Compared with cold storage thawing (CST) and microwave thawing (MT), the MFI value of MNPMT was significantly decreased (P < 0.01). The result of MD simulation showed that MNPs displayed a tendency to gradually approach the surface of ice crystals, and induced a certain degree of damage to the ice crystal surface, thereby markedly inhibiting ice crystal recrystallization. CONCLUSION MNPMT can reduce the drip loss by keeping the protein conformation stable and inhibiting the recrystallization of ice crystals during the thawing process. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Huifang Guo
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Jianrong Li
- Department of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
35
|
Encapsulation of catechin or curcumin in co-crystallized sucrose: Fabrication, characterization and application in beef meatballs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Ma J, Pan D, Dong Y, Diao J, Chen H. The Effectiveness of Clove Extract on Oxidization-Induced Changes of Structure and Gelation in Porcine Myofibrillar Protein. Foods 2022; 11:foods11131970. [PMID: 35804785 PMCID: PMC9265466 DOI: 10.3390/foods11131970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the structural characteristics and gelation behavior of myofibrillar proteins (MPs) with or without clove extract (CE) at different oxidation times (0, 1, 3, and 5 h). Circular dichroism spectra and Fourier transform infrared spectra showed that samples with CE addition had significantly higher α-helix content after oxidation than those without CE addition. However, prolonged oxidation (5 h) would make the effect of CE addition less pronounced. Similarly, the ultraviolet-visible (UV) spectra analysis revealed that CE controlled the oxidative stretching of the protein tertiary structure and reduced the exposure of aromatic amino acids. In addition, the particle size and turbidity values of the CE group significantly decreased after oxidation compared to the non-CE group. CE increased the gel strength by 10.05% after 5 h of oxidation, which could be observed by scanning electron microscopy (SEM) as a more homogeneous, dense, less porous, network-like gel structure. Therefore, these results showed that oxidation induced significant changes in the structure and gel properties of MPs, but the addition of CE effectively inhibited these destructive changes.
Collapse
Affiliation(s)
- Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
| | - Ying Dong
- Huangpu Customs Technology Center, Dongguan 523000, China;
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
- China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing 163319, China
- Correspondence:
| |
Collapse
|
37
|
Hu R, Zhang M, Mujumdar AS. Application of infrared and microwave heating prior to freezing of pork: Effect on frozen meat quality. Meat Sci 2022; 189:108811. [PMID: 35398771 DOI: 10.1016/j.meatsci.2022.108811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The effect of thermal treatment using infrared and microwave fields on freezing of pork loin was investigated. Several infrared and microwave treatment protocols were designed and tested to determine the thawing losses is each case to identify the most suitable one which yielded the best quality. In addition, the state of moisture in the meat, cooking loss, texture, color, pH, Thiobarbituric acid-reactive substances (TBARS), and other indicators were also evaluated. The results show that both microwave and infrared pre-dehydration can reduce the thawing loss of pork loin; the minimum loss is only about 1.7% using microwave 50 W intensity of 1.92 W/g of wet pork. Pre-dehydration also reduced the hardness of all samples and increased springiness, cohesiveness, and resilience. It is noteworthy that pretreatment did not damage the color. Based on the results of this study it is concluded that thermal pretreatment using microwave or infrared fields of appropriate strength prior to freezing can yield good quality frozen pork meat.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, Quebec, Canada
| |
Collapse
|
38
|
Wang H, Pei Z, Xue C, Cao J, Shen X, Li C. Comparative Study on the Characterization of Myofibrillar Proteins from Tilapia, Golden Pompano and Skipjack Tuna. Foods 2022; 11:foods11121705. [PMID: 35741902 PMCID: PMC9222683 DOI: 10.3390/foods11121705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the physicochemical properties, functional properties and N-glycoproteome of tilapia myofibrillar protein (TMP), golden pompano myofibrillar protein (GPMP) and skipjack tuna myofibrillar protein (STMP) were assessed. The microstructures and protein compositions of the three MPs were similar. TMP and GPMP had higher solubility, sulfhydryl content and endogenous fluorescence intensity, lower surface hydrophobicity and β-sheet contents than STMP. The results showed that the protein structures of TMP and GPMP were more folded and stable. Due to its low solubility and high surface hydrophobicity, STMP had low emulsifying activity and high foaming activity. By N-glycoproteomics analysis, 23, 85 and 22 glycoproteins that contained 28, 129 and 35 N-glycosylation sites, were identified in TMP, GPMP and STMP, respectively. GPMP had more N-glycoproteins and N-glycosylation sites than STMP, which was possibly the reason for GPMP’s higher solubility and EAI. These results provide useful information for the effective utilization of various fish products.
Collapse
Affiliation(s)
- Huibo Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Zhisheng Pei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel./Fax: +86-0898-66256495
| |
Collapse
|
39
|
Zhu H, Shu W, Xu C, Yang Y, Huang K, Ye J. Novel electromagnetic-black-hole-based high-efficiency single-mode microwave liquid-phase food heating system. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Lei Y, Deng X, Zhang Z, Guo X, Zhang J. Effects of oxidation on the physicochemical properties and degradation of mutton myofibrillar proteins. J Food Sci 2022; 87:2932-2942. [PMID: 35638344 DOI: 10.1111/1750-3841.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Tenderness affects mutton quality and price, and the degradation of myofibrillar protein (MP) is critical to improve tenderness. We investigated the oxidative modification of mutton MP by hydroxyl radicals (OH) and the effects of this modification on the proteolysis of MP by µ-calpain. As the H2 O2 concentrations increased, the carbonyl and dityrosine contents and the surface hydrophobicity of MP all display an increasing trend, whereas the total sulfhydryl and intrinsic fluorescence intensity of MP declines significantly. SDS-PAGE electrophoresis indicates that disulfide bonds and other covalent bonds led to protein cross-linking and aggregation. After adding µ-calpain, with increasing oxidation, the degradation percentage of myosin heavy chain (MHC) increases considerably and actin degradation is promoted, while the proteolysis of troponin-T and desmin is inhibited. These data suggest that·OH can change MP physicochemical properties and its susceptibility to µ-calpain. Future investigations will focus on the effect of oxidation on the degradation of MP by other proteases, such as cathepsins and caspase and the effect of oxidation on these enzymes. PRACTICAL APPLICATION: The calpain system, particularly µ-calpain, plays a pivotal role in postmortem tenderization of meat. Protein oxidative modifications influence meat tenderness mainly by regulating proteolysis. An investigation of the effect of oxidation on the proteolytic susceptibility of MP to degradation by µ-calpain allows for the monitoring of the association between protein oxidation and meat tenderness.
Collapse
Affiliation(s)
- Yongdong Lei
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China.,Food Quality Supervision and Testing Center of Ministry of Agriculture, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Xiaorong Deng
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Zhiwei Zhang
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Xin Guo
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Jian Zhang
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
41
|
Liu X, Mao K, Sang Y, Tian G, Ding Q, Deng W. Physicochemical Properties and in vitro Digestibility of Myofibrillar Proteins From the Scallop Mantle ( Patinopecten yessoensis) Based on Ultrahigh Pressure Treatment. Front Nutr 2022; 9:873578. [PMID: 35479738 PMCID: PMC9037751 DOI: 10.3389/fnut.2022.873578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The utilization of myofibrillar proteins (MPs) from the scallop mantle was limited due to its poor digestibility in vitro. In this study, structural properties and in vitro digestibility of MP were evaluated after modified by ultra-high pressure (UHP) at different pressures (0.1, 100, 200, 300, 400, and 500 MPa). The results showed that high pressure could significantly increase the ordered structure content like α-helix, inhibit the formation of disulfide bonds, and decrease surface hydrophobicity. Moreover, MP possessed the optimal solubility and in vitro digestibility properties at 200 MPa due to the minimum particle size and turbidity, relatively dense and uniform microstructure. The results indicated that the UHP treatment was an effective method to improve the digestibility of MP from scallop mantle and lay a theoretical basis for the functional foods development of poor digestion people and comprehensive utilization of scallop mantles.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiuyue Ding
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenyi Deng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
42
|
Comparative study of conventional and novel combined modes of microwave- and infrared-assisted thawing on quality of frozen green pepper, carrot and cantaloupe. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Zhu M, Zhang J, Jiao L, Ma C, Kang Z, Ma H. Effects of freezing methods and frozen storage on physicochemical, oxidative properties and protein denaturation of porcine longissimus dorsi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
LI L. Effects of high pressure versus conventional thawing on the quality changes and myofibrillar protein denaturation of slow/fast freezing beef rump muscle. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.91421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Li LI
- Harbin University of Commerce, China
| |
Collapse
|
45
|
Yuan JF, Hou ZC, Wang DH, Qiu ZJ, Gong MG, Sun JR. Microwave irradiation: Effect on activities and properties of polyphenol oxidase in grape maceration stage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Effects of freeze-thaw cycles of Pacific white shrimp (Litopenaeus vannamei) subjected to radio frequency tempering on melanosis and quality. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|