1
|
Assis RQ, Maciel FS, Queiroz BBT, Rios ADO, Pertuzatti PB. Active films incorporated with pequi (Caryocar brasiliense Camb.) or buriti (Mauritia flexuosa L.) oil as strategy to protection of lipid oxidation and carotenoids photodegradation. Food Chem 2025; 482:144085. [PMID: 40184753 DOI: 10.1016/j.foodchem.2025.144085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Pequi (Caryocar brasiliense Camb.) and buriti (Mauritia flexuosa L.) are fruits with potential for extraction of edible vegetable oil with high carotenoid content. The aim of this study was incorporated these oils (5 % or 10 %) into cassava starch-based films and verify their photoprotective effect on pigments and maintenance of lipid oxidative stability. Vegetable oils showed a similar profile for carotenoids, with β-carotene being the major pigment (74-77 %). The hydrophobic character and presence of carotenoids in the oils, led to reduced hydrophilicity of the films, better barrier to UV-visible light transmission and to the plasticizing effect. The active films showed rapid biodegradability in soil (60-70 % after 15 days), in addition to a protective effect against photodegradation of the β-carotene solution by increasing the half-life (t1/2). When applied as packaging for storing corn oil under accelerated oxidation conditions, there was less formation of degradation compounds, which demonstrates potential application as food packaging.
Collapse
Affiliation(s)
- Renato Queiroz Assis
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6.390, 78600-000 Barra Do Garças, MT, Brazil
| | - Franciele Silva Maciel
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6.390, 78600-000 Barra Do Garças, MT, Brazil
| | - Betânia Branco Tiago Queiroz
- Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6.390, 78600-000 Barra do Garças, MT, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Paula Becker Pertuzatti
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6.390, 78600-000 Barra Do Garças, MT, Brazil; Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6.390, 78600-000 Barra do Garças, MT, Brazil.
| |
Collapse
|
2
|
de Oliveira JP, de Almeida MEF, Costa JDSS, da Silva IB, de Oliveira JS, Oliveira EL, Landim LB, da Silva NMC, de Oliveira CP. Effect of eucalyptus nanofibril as reinforcement in biodegradable thermoplastic films based on rice starch (Oryza sativa): Evaluation as primary packaging for crackers. Food Chem 2025; 474:143177. [PMID: 39914357 DOI: 10.1016/j.foodchem.2025.143177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
This study investigated the incorporation of eucalyptus nanocellulose (CNF) into rice starch-based thermoplastic (TPS) films, evaluating the effects of four CNF concentrations (0 %, 2 %, 4 %, and 6 %, w/w) on the physicochemical properties of the films. The analyses included scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), solubility, mechanical properties, optical properties, biodegradability, and application for cookie preservation. Atomic force microscopy (AFM) confirmed good CNF dispersion at 4 %, while higher concentrations caused agglomeration. FTIR analysis revealed effective interactions between CNF and the starch matrix. The TPS + 4 % CNF film showed reductions in water solubility (44 %), solubility in acidic (34 %) and basic (32 %) conditions, water vapor permeability (51 %), and water retention capacity (27 %) compared to pure TPS. Tensile strength increased from 3 MPa (pure TPS) to 6.5 MPa (TPS with 4 % CNF), while elongation at break ranged from 38 % (pure TPS) to 65 % (TPS with 2 % CNF). At 6 % CNF, elongation decreased to 45 %, with increased rigidity. The TPS + 4 % CNF film demonstrated good performance in mechanical strength and water vapor barrier properties, while higher CNF concentrations resulted in stiffer, less flexible films due to restricted polymer chain mobility. Higher CNF concentrations also increased the film's opacity. With 90 % biodegradability after 15 days, the reinforced film showed environmental potential. In cookie preservation, TPS + 4 % CNF demonstrated promising performance, with moisture barrier and texture preservation capabilities comparable to oriented polypropylene (BOPP). The combination of biodegradable primary packaging with non-biodegradable secondary packaging offers an innovative solution for food protection with reduced environmental impact.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Maria Elis Ferreira de Almeida
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Jéssica da Silva Santos Costa
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Lucas Britto Landim
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Normane Mirele Chaves da Silva
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | | |
Collapse
|
3
|
Maciel FS, Assis RQ, Rios ADO, Pertuzatti PB. Açaí powder-enriched biodegradable starch films: Characterization, release in food simulants and protective effect in photodegradation system. Int J Biol Macromol 2025; 308:142420. [PMID: 40174824 DOI: 10.1016/j.ijbiomac.2025.142420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Açaí is an important source of natural pigments with antioxidant capacity, such as anthocyanins. Among the various possibilities for its application is its incorporation into biodegradable films, which can act as carriers of these bioactive compounds. The objective of this study was to develop biodegradable films based on starch with different açaí powder concentrations (5 % and 15 %). The films were developed using the casting technique and evaluated in relation to barrier properties, physicochemical, biodegradability, release to food simulants, and protective effect against photodegradation of β-carotene. The addition of the natural antioxidant led to the development of films with greater color intensity and improved light barrier and mechanical properties (tensile strength and elongation). The retention of açaí powder in the polymer matrix was identified in the FTIR analysis through the intensification of some regions in relation to the control film. The cohesion and interaction between film:active compound showed an improvement in water-related properties, such as reduced permeability and water absorption. Furthermore, the active films showed sustained release of anthocyanins into the food simulant (maximum of 3.04 mg cyanidin 3-glycoside/100 g and 8.06 mg cyanidin 3-glycoside/100 g for films AP5% and AP15%, respectively) and better protection against photodegradation of the β-carotene solution (35-50 % retention when exposed to high light intensity). The rapid biodegradability, thermal stability, and stability at different pH may indicate potential application as packaging for foods susceptible to photodegradation.
Collapse
Affiliation(s)
- Franciele Silva Maciel
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Renato Queiroz Assis
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Paula Becker Pertuzatti
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil.
| |
Collapse
|
4
|
Liu Q, Wang L, Wang Z, Li Y, Chen H. Preparation and characterization of carvacrol/soybean protein isolate composite film with efficient antimicrobial and antioxidant activities and its application in grape preservation. Food Chem 2025; 464:141572. [PMID: 39418950 DOI: 10.1016/j.foodchem.2024.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
There is an urgent need for a simple and effective method to enhance the freshness of fruits during transportation. In this study, we developed a composite antibacterial film (CAR film) using carvacrol and soy protein isolate (SPI). The mechanical properties, hydrophobicity, antibacterial activity, and antioxidant capacity of the film were characterized. The results demonstrated that, compared to the soy protein isolate film, the film with 2.5 % carvacrol content exhibited superior mechanical properties (tear strength decreased by approximately 37 %, elongation at break increased by about 108 %), hydrophobicity (water vapor permeability decreased by 38 %), antibacterial activity (inhibition zone diameters against E. coli and S. aureus were 14.21 mm and 11.83 mm, respectively), antioxidant capacity (increased by 5 to 6 times), and biocompatibility (cell survival rate exceeded 90 %). Grape preservation experiments further confirmed that the CAR film effectively prolongs shelf life. Therefore, CAR film is a promising packaging material for fruit preservation.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| | - Longgang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Hong Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
6
|
Correia VTDV, Silva VDM, Mendonça HDOP, Ramos ALCC, Silva MR, Augusti R, de Paula ACCFF, Ferreira RMDSB, Melo JOF, Fante CA. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023; 28:2359. [PMID: 36903602 PMCID: PMC10005132 DOI: 10.3390/molecules28052359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 03/08/2023] Open
Abstract
Jabuticaba (Plinia cauliflora) and jambolan (Syzygium cumini) fruits are rich in phenolic compounds with antioxidant properties, mostly concentrated in the peel, pulp, and seeds. Among the techniques for identifying these constituents, paper spray mass spectrometry (PS-MS) stands out as a method of ambient ionization of samples for the direct analysis of raw materials. This study aimed to determine the chemical profiles of the peel, pulp, and seeds of jabuticaba and jambolan fruits, as well as to assess the efficiency of using different solvents (water and methanol) in obtaining metabolite fingerprints of different parts of the fruits. Overall, 63 compounds were tentatively identified in the aqueous and methanolic extracts of jabuticaba and jambolan, 28 being in the positive ionization mode and 35 in the negative ionization mode. Flavonoids (40%), followed by benzoic acid derivatives (13%), fatty acids (13%), carotenoids (6%), phenylpropanoids (6%), and tannins (5%) were the groups of substances found in greater numbers, producing different fingerprints according to the parts of the fruit and the different extracting solvents used. Therefore, compounds present in jabuticaba and jambolan reinforce the nutritional and bioactive potential attributed to these fruits, due to the potentially positive effects performed by these metabolites in human health and nutrition.
Collapse
Affiliation(s)
- Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | | | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mauro Ramalho Silva
- Departamento de Nutrição, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte 30640-070, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
7
|
Barroso T, Sganzerla W, Rosa R, Castro L, Maciel-Silva F, Rostagno M, Forster-Carneiro T. Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food Res Int 2022; 158:111547. [DOI: 10.1016/j.foodres.2022.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
|
8
|
Pomace-Cassava as Antioxidant Bio-Based Coating Polymers for Cheeses. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fruit and vegetable-based materials, rich in phenolic pigments, and especially anthocyanins, have attracted attention as promising sources for bio-based antioxidant coating polymers, being a non-toxic, natural, ecofriendly, and green label solution to lower oxidation degradation in oil-water emulsion food, such as cheeses. However, could their pomaces also be used in such materials? This work has investigated the use of jabuticaba peels and red cabbage stir pomace extracts as antioxidant additives for cheese coating polymers. The antioxidant capacity of the jabuticaba-red cabbage pomace cassava-based polymer was evaluated in vitro (total phenolic, total anthocyanin content and DPPH scavenging %) and in vivo (by coating Minas Frescal cheeses and monitoring their peroxide index increase during a 9-day shelf life, at 10 °C). An in vitro characterization has indicated a high antioxidant capacity for both pomace extracts, with a higher capacity observed for the jabuticaba peels. In vivo investigations indicated that the pomace-starch coatings have protected cheeses up to 8.5 times against oxidation when compared to the control, with a synergistic protector effect among pomaces. Physical–chemical characterizations (pH, acidity, total solids, ash, total protein, fat content and syneresis) have indicated no coating interference on the cheese’s development.
Collapse
|
9
|
Romani VP, Martins VG, Silva AS, Martins PC, Nogueira D, Carbonera N. Amazon‐sustainable‐flour from açaí seeds added to starch films to develop biopolymers for active food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.51579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viviane P. Romani
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia G. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Ayla S. Silva
- Biocatalysis Laboratory, Catalysis, Biocatalysis and Chemical Processes Division National Institute of Technology, Ministry of Science, Technology, and Innovations Rio de Janeiro Brazil
| | - Paola C. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Daiane Nogueira
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Nádia Carbonera
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
10
|
Maniglia BC, Silveira TMG, Tapia-Blácido DR. Starch isolation from turmeric dye extraction residue and its application in active film production. Int J Biol Macromol 2022; 202:508-519. [PMID: 35007637 DOI: 10.1016/j.ijbiomac.2021.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022]
Abstract
In this study, we have isolated starch from turmeric dye extraction residue by steeping in acid medium (AS), steeping in water (WS), or steeping in alkaline medium (KS) and assessed the filmogenic capacity of the resulting starches. We have also characterized the chemical composition, morphology, swelling power, solubility, crystallinity, and active properties of the AS, WS, and KS starches and investigated the mechanical, functional, antioxidant, and antimicrobial properties of the corresponding films. The AS and KS starches showed lower apparent amylose content and higher purity, relative crystallinity, swelling power, and solubility than the WS starch. All the starches retained phenolic compounds and curcuminoids; their phenolic and curcuminoid contents were higher than the contents in the residue, especially in the case of the AS starch, which yielded films with the best antioxidant and antimicrobial activities. The AS and KS starches yielded films that were more resistant at break, less soluble in water, and less hydrophilic than the film obtained from the WS starch. Thus, submitting turmeric dye extraction residue to AS in ascorbic acid yielded a starch that resulted in films with good mechanical properties and better antioxidant and antimicrobial properties, to ensure safe and prolonged food shelf life.
Collapse
Affiliation(s)
- Bianca Chieregato Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| | - Thamiris Maria Garcia Silveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Tran TTB, Vu QL, Pristijono P, Kirkman T, Nguyen MH, Vuong QV. Optimizing conditions for the development of a composite film from seaweed hydrocolloids and pectin derived from a fruit waste, gac pulp. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thuy Thi Bich Tran
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Quyen Le Vu
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Penta Pristijono
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Tim Kirkman
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Minh Huu Nguyen
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- School of Science and Health Western Sydney University Penrith New South Wales Australia
| | - Quan Van Vuong
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| |
Collapse
|
12
|
Peron-Schlosser B, Carpiné D, Matos Jorge RM, Rigon Spier M. Optimization of wheat flour by product films: A technological and sustainable approach for bio-based packaging material. J Food Sci 2021; 86:4522-4538. [PMID: 34561875 DOI: 10.1111/1750-3841.15908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to evaluate the feasibility of the production of sustainable and biodegradable packages made from a little-explored by product of wheat-milling, the glue flour (GF). Films were produced by the casting method and the effect of the incorporation of glycerol, sorbitol, and GF in the properties of the films was investigated following the central composite rotational design (CCRD) approach. The results have been statistically analyzed by the response surface methodology and the desirability function. Due to the rich composition in amylaceous reserve (64.81%; 26% of amylose content), considerable protein content (11.23%), and fibers (8.28%), the GF proved to be suitable for use as a matrix in biopolymer films. All the properties were mainly influenced by the plasticizer type and GF concentration. Film plasticized with glycerol (run 13) was more flexible, had higher moisture (28.39%) content, and was more adhesive than the formulation made with sorbitol (run 11). Film elongation (ELO) ranged from 25.84% to 56.71%, and tensile strength (TS) from 0.10 to 2.8 MPa. The optimized process conditions were 8% for Cf, 0% for Cg, and 4% for Cs. Under these conditions, the films presented low moisture (12.1%), moderate solubility (35.5%) and TS (1.64 MPa), and high ELO (72.06%). This study showed that GF is a promising source for the development of biodegradable films. PRACTICAL APPLICATION: Films made from a by product of wheat flour (glue flour) have technological potential to be used as packaging for food products. The valorization of a by product of the agribusiness without pre-treatment for the production of biodegradable films was made possible. The study by casting technique is a previous for scale-up production.
Collapse
Affiliation(s)
- Bianca Peron-Schlosser
- Post-Graduation Program in Food Engineering, Chemical Engineering Department, Technology Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Danielle Carpiné
- Post-Graduation Program in Food Engineering, Chemical Engineering Department, Technology Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Regina Maria Matos Jorge
- Post-Graduation Program in Food Engineering, Chemical Engineering Department, Technology Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Michele Rigon Spier
- Post-Graduation Program in Food Engineering, Chemical Engineering Department, Technology Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
13
|
Laureanti EJG, Paiva TS, Souza Tasso I, Dallabona ID, Helm CV, Matos Jorge LM, Jorge RMM. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J Appl Polym Sci 2021. [DOI: 10.1002/app.50922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
| | - Thainnane Silva Paiva
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ivisson Souza Tasso
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ithiara Dalponte Dallabona
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | | | - Luiz Mario Matos Jorge
- Department of Chemical Engineering State University of Maringá (UEM) Maringá Paraná Brazil
| | - Regina Maria Matos Jorge
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
14
|
Technological and diffusion properties in the wet salting of beef assisted by ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Marsiglia WIMDL, Oliveira LDSC, Santiago ÂM, Araújo VS, Melo BCA, Almeida RLJ, Santos NC. Evaluation of bioactive compounds in an infused drink prepared from the powder of jaboticaba (
Myrciaria cauliflora
) peels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|