1
|
Assalem N, Abd-Allah H, Ragaie MH, Ahmed SS, Elmowafy E. Therapeutic potential of limonene-based syringic acid nanoemulsion: Enhanced ex-vivo cutaneous deposition and clinical anti-psoriatic efficacy. Int J Pharm 2024; 660:124376. [PMID: 38914355 DOI: 10.1016/j.ijpharm.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nanoemulsions have carved their position in topical delivery owing to their peculiar features of forming a uniform film on the skin and conquering stratum corneum barrier and hence fostering dermal penetration and retention. The present work developed syringic acid nanoemulsion (SA-NE) by spontaneous emulsification as an anti-psoriatic remedy via the dermal route. SA-NE were prepared with either lauroglycol90, limonene or their combination (oil phase) and tween80 (surfactant) with variable concentrations. The physicochemical characteristics of SA-NE were assessed together with Ex-vivo skin deposition and dermal toxicity. The effectiveness of optimal formula in psoriatic animal model and psoriatic patients was investigated using PASI scoring and dermoscope examination. Results showed that, SA-NE containing mixture of lauroglycol 90, limonene and 10 % tween80 (F5), was selected as the optimal formula presenting stable nanoemulsion for 2-month period, showing droplet size of 177.6 ± 13.23 nm, polydispersity index of 0.16 ± 0.06, zeta potential of -21.23 ± 0.41 mV. High SA% in different skin strata and no dermal irritation was noticed with limonene-based SA-NE also it showed high in-vitro anti- inflammatory potential compared to the blank and control formulations. A preclinical study demonstrated that limonene-based SA-NE is effective in alleviating psoriasis-like skin lesions against imiquimod-induced psoriasis in rats. Clinically, promising anti-psoriatic potential was asserted as all patients receiving F5 experienced better clinical improvement and response to therapy, achieving ≥ 50 % reduction in PASI scores versus only 35 % responders in the Dermovate® cream group. Collectively, the practical feasibility of limonene-based SA-NE topical delivery can boost curative functionality in the treatment of psoriatic lesions.
Collapse
Affiliation(s)
- Noor Assalem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566.
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Shimaa S Ahmed
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| |
Collapse
|
2
|
Zhou Y, Luo X, Wang Z, McClements DJ, Huang W, Fu H, Zhu K. Dual role of polyglycerol vitamin E succinate in emulsions: An efficient antioxidant emulsifier. Food Chem 2023; 416:135776. [PMID: 36889015 DOI: 10.1016/j.foodchem.2023.135776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
α-Tocopherol, as an oil-soluble vitamin with strong antioxidant activity. It is the most naturally abundant and biologically active form of vitamin E in humans. In this study, a novel emulsifier (PG20-VES) was synthesized by attaching hydrophilic twenty-polyglycerol (PG20) to hydrophobic vitamin E succinate (VES). This emulsifier was shown to have a relatively low critical micelle concentration (CMC = 3.2 μg/mL). The antioxidant activities and emulsification properties of PG20-VES were compared with those of a widely used commercial emulsifier: D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS). PG20-VES exhibited a lower interfacial tension, stronger emulsifying capacity and similar antioxidant property to TPGS. An in vitro digestion study showed that lipid droplets coated by PG20-VES were digested under simulated small intestine conditions. This study showed that PG20-VES is an efficient antioxidant emulsifier, which may have applications in the formulation of bioactive delivery systems in the food, supplement, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
3
|
Otchere E, McKay BM, English MM, Aryee ANA. Current trends in nano-delivery systems for functional foods: a systematic review. PeerJ 2023; 11:e14980. [PMID: 36949757 PMCID: PMC10026715 DOI: 10.7717/peerj.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background Increased awareness of the relationship between certain components in food beyond basic nutrition and health has generated interest in the production and consumption. Functional foods owe much of their health benefits to the presence of bioactive components. Despite their importance, their poor stability, solubility, and bioavailability may require the use of different strategies including nano-delivery systems (NDS) to sustain delivery and protection during handling, storage, and ingestion. Moreover, increasing consumer trend for non-animal sourced ingredients and interest in sustainable production invigorate the need to evaluate the utility of plant-based NDS. Method In the present study, 129 articles were selected after screening from Google Scholar searches using key terms from current literature. Scope This review provides an overview of current trends in the use of bioactive compounds as health-promoting ingredients in functional foods and the main methods used to stabilize these components. The use of plant proteins as carriers in NDS for bioactive compounds and the merits and challenges of this approach are also explored. Finally, the review discusses the application of protein-based NDS in food product development and highlights challenges and opportunities for future research. Key Findings Plant-based NDS is gaining recognition in food research and industry for their role in improving the shelf life and bioavailability of bioactives. However, concerns about safety and possible toxicity limit their widespread application. Future research efforts that focus on mitigating or enhancing their safety for food applications is warranted.
Collapse
Affiliation(s)
- Emmanuel Otchere
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| | - Brighid M. McKay
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia M. English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| |
Collapse
|
4
|
N-octadecyl lactose-amide modified microemulsions as targeting delivery carrier for α-linolenic acid: In vitro evaluation and interaction mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kang Z, Chen S, Zhou Y, Ullah S, Liang H. Rational construction of citrus essential oil nanoemulsion with robust stability and high antimicrobial activity based on combination of emulsifiers. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Xu J, Huang S, Zhang Y, Zheng Y, Shi W, Wang X, Zhong J. Effects of antioxidant types on the stabilization and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Colloids Surf B Biointerfaces 2022; 217:112624. [PMID: 35728370 DOI: 10.1016/j.colsurfb.2022.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Lipid oxidation is a major challenge in the development and storage of lipid-containing food products. In this work, we extracted aquatic gelatin from silver carp scales and studied the effects of antioxidant types (water-soluble and lipid-soluble types) on the stabilization, lipid oxidation, and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Vitamin C (VC), a water-soluble antioxidant, and vitamin E (VE), a lipid-soluble antioxidant, had no obvious effects on the appearance, droplet size distribution, and droplet stability of the emulsion. VC slowed the liquid-gel transition of the emulsions at room temperature. The emulsion creaming stability decreased with the increase of VC concentration, whereas it increased with the increase of VE concentration. Lipid oxidation hierarchy of emulsion groups at room temperature were VC<VE<control<pure oil. Free fatty acids were mainly released from the silver carp scale gelatin-stabilized emulsions in the simulated intestinal fluid. Moreover, compared with the control group, VC increased the free fatty acid release percentages, whereas VE decreased them. This work provided useful information for developing antioxidants in the field of food science and in value-added utilization research of aquatic by-products.
Collapse
Affiliation(s)
- Jiamin Xu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
7
|
Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci 2022; 304:102685. [PMID: 35504214 DOI: 10.1016/j.cis.2022.102685] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology is being utilized in various industries to increase the quality, safety, shelf-life, and functional performance of commercial products. Nanoemulsions are thermodynamically unstable colloidal dispersions that consist of at least two immiscible liquids (typically oil and water), as well as various stabilizers (including emulsifiers, texture modifiers, ripening inhibitors, and weighting agents). They have unique properties that make them particularly suitable for some applications, including their small droplet size, high surface area, good physical stability, rapid digestibility, and high bioavailability. This article reviews recent developments in the formulation, fabrication, functional performance, and gastrointestinal fate of nanoemulsions suitable for use in the pharmaceutical, cosmetic, nutraceutical, and food industries, as well as providing an overview of regulatory and health concerns. Nanoemulsion-based delivery systems can enhance the water-dispersibility, stability, and bioavailability of hydrophobic bioactive compounds. Nevertheless, they must be carefully formulated to obtain the required functional attributes. In particular, the concentration, size, charge, and physical properties of the nano-droplets must be taken into consideration for each specific application. Before launching a nanoscale product onto the market, determination of physicochemical characteristics of nanoparticles and their potential health and environmental risks should be evaluated. In addition, legal, consumer, and economic factors must also be considered when creating these systems.
Collapse
Affiliation(s)
- Yesim Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey.
| | | | - Mustafa Durmuş
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| | - Hatice Yazgan
- Cukurova University, Faculty of Ceyhan Veterinary Medicine, Department of Food Hygiene and Technology of Veterinary Medicine, Adana, Turkey
| | - Halil Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey
| | | | - Fatih Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| |
Collapse
|
8
|
Han C, Yang C, Li X, Liu E, Meng X, Liu B. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chem 2022; 368:130859. [PMID: 34425339 DOI: 10.1016/j.foodchem.2021.130859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
DHA loaded nanoliposomes, stabilized by β-sitosterol, were prepared by thin film hydration-sonication method. The characteristics and membranes properties of DHA-NLs with different β-sitosterol content were measured. The samples with the same formulation were used to measure the resistance of environment stress and controlled release & absorption of DHA in vitro and in vivo. The results showed that the maximal encapsulation efficiency of DHA-NLs was (86.95 ± 0.95)%, when the ratio of soybean lecithin to β-sitosterol was 5:1. The particle size of all samples was within 200 nm and relative retention rate was more than 60% after 3 weeks storage. The area under the curve of DHA concentration of DHA-NLs and DHA-emulsion groups was 1.32 and 1.08, respectively. In summary, the nanoliposomes were promising to improve the absorption of DHA in form of ethyl ester.
Collapse
Affiliation(s)
- Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Gao Y, Liu Q, Wang Z, Zhuansun X, Chen J, Zhang Z, Feng J, Jafari SM. Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Xu H, Yang L, Chen Y, Shi L, Zhang J, Jin J, Wei W, Jin Q, Wang X. WITHDRAWN: Effects of MCC to CMC ratios on room temperature-storage stabilities and whipping capabilities of whipping creams. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Liu E, Zhao S, Li X, Meng X, Liu B. Preparation, characterization of PLGA/chitosan nanoparticles as a delivery system for controlled release of DHA. Int J Biol Macromol 2021; 185:782-791. [PMID: 34216672 DOI: 10.1016/j.ijbiomac.2021.06.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
In this work, a novel DHA-loaded nanoparticle with PLGA and chitosan (PCSDNP) was successfully prepared. The structure of PCSDNP and DHA-loaded PLGA nanoparticles was measured by transmission electron microscope, scanning electron microscope, and differential scanning calorimeter. The interaction strength between DHA, PLGA, and chitosan was evaluated through Fourier transform infrared spectroscopy. The curves of controlled DHA release and stabilities for different environmental factors of two NPs were evaluated. Importantly, two NPs were almost regularly spherical and the interactions were hydrogen bonds and electrostatic interactions between PLGA and chitosan. These NPs had a good encapsulation rate (80.45%) and high-water solubility than the free DHA molecule. In simulated gastrointestinal fluid, two NPs showed a controlled-release pattern. Overall, PCSDNP had better stability and controlled-release effect with the synergy between CS and PLGA under the conditions of pH (2- 7), ionic strength (0- 500 mM), storage time (0- 42 d), and temperature (30- 80 °C).
Collapse
Affiliation(s)
- Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shenghan Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods 2021; 10:foods10020365. [PMID: 33567622 PMCID: PMC7915003 DOI: 10.3390/foods10020365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence:
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| |
Collapse
|