1
|
Zhang G, Guo J, Guo J. A sustainable approach in pumpkin seed oil processing line: Recent advances in pumpkin seed oil and oil processing by-products. Food Chem X 2025; 26:102259. [PMID: 39995405 PMCID: PMC11848496 DOI: 10.1016/j.fochx.2025.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Pumpkin seed oil (PSO) has gained popularity worldwide for its nutritional profile and biological effects, significantly increasing its market demand and consumption. However, pumpkin seed oil cake (PSOC), as the secondary by-product from oil processing, contains high potential value and is scarcely utilised. With the PSO increase in production, a large amount of PSOC will be generated. The key to achieving a sustainable food system is maximising value from the food supply chain. This review aims to summarise the nutritional profile of PSO and PSOC and highlight the current advance in the biological activity of PSO and the valorisation strategies of PSOC. This review also concludes the current advance in food applications of PSO and PSOC in meat and bakery products, respectively. A better understanding of their value and current advances can help to achieve the maximisimg value from PSO processing line in an effective and sustainable approach.
Collapse
Affiliation(s)
| | - Jingbo Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| |
Collapse
|
2
|
Taha M, Abdelbagi O, Baokbah TAS, Bagadood RM, Jalal NA, Obaid R, Al-Hazmi NE, Qusty NF. Insights into the protective effect of omega-3 nanoemulsion against colistin-induced nephrotoxicity in experimental rats: regulation of autophagy and necroptosis via AMPK/mTOR and RIPK1/RIPK3/MLKL signaling pathways. Ren Fail 2024; 46:2429686. [PMID: 39584420 PMCID: PMC11590192 DOI: 10.1080/0886022x.2024.2429686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Colistin is considered one of the most effective antibiotics against gram-negative bacteria. However, nephrotoxicity is one of the dose-limiting factors in its treatment. This study aimed to evaluate the outcome of omega-3 nanoemulsion against colistin-induced nephrotoxicity and its possible underlying mechanism. Four rat groups were involved in the present research; each group containing ten rats was divided as follows: Group I (control) rats received normal saline; Group II (omega-3 nanoemulsion) rats received a dose of 500 mg/kg/body weight orally; Group III (colistin) rats received colistin intraperitoneally (300.000 IU/kg/day); and Group IV (colistin/omega-3 nanoemulsion) rats were treated for six days. The results revealed that colistin administration caused deterioration in renal functions such as creatinine, blood urea nitrogen, 24 h proteinuria, and kidney injury molecule-1 with decrease in creatinine clearance, resulting in histological alternation and tubular damage with diffuse interstitial inflammation. Additionally, colistin significantly increased the lipid peroxidation marker malonaldehyde, proinflammatory cytokines tumor necrosis alpha, interleukin-6, interleukin-1 beta. Also, autophagy influx marker microtubule-associated protein light chain 3B, Beclin-1, and necroptotic related proteins, receptor-interacting protein kinase-3 (RIPK-3), RIPK-1, mixed lineage kinase domain-like protein, and autophagy pathway regulatory kinase AMP-activated protein kinase, with a decrease in antioxidant enzymes catalase, superoxide dismutase, and total antioxidant capacity, autophagic marker ubiquitin-binding protein (p62), and regulator Mammalian target of rapamycin. Interestingly, omega-3 nanoemulsion reversed the results above, dramatically improving renal function and histological picture. Thus, omega-3 nanoemulsion provided a notable method for suppressing colistin-induced nephrotoxicity via its antioxidant and anti-inflammatory power, inhibiting pathological autophagy and necroptosis.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Siol M, Chołuj N, Mańko-Jurkowska D, Bryś J. Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends. Foods 2024; 13:3813. [PMID: 39682884 DOI: 10.3390/foods13233813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study characterized the quality of hemp oil (HO) and pumpkin seed oil (PO) and their blends before and after 2 and 4 months of storage at refrigerated and room temperature, without access to light and oxygen. The analyses included determining the acid value, peroxide value, fatty acid (FA) composition, and FA distribution in triacylglycerol (TAG) molecules. Pressure differential scanning calorimetry (PDSC) was used to assess the oxidative stability of oils and their blends. This study also evaluated the nutritional potential of hemp oil and pumpkin seed oil blends, as atherogenicity, thrombogenicity, and health-promoting indices and hypocholesterolaemic/hypercholesterolaemic ratio were calculated. The tested samples differed in properties depending on the storage time and temperature. The optimal choice was a blend of 50% hemp oil (HO) and 50% pumpkin oil (PO). This mixture demonstrated the desired fatty acid composition, satisfactory acid and peroxide values, and a relatively good oxidation induction time during storage. Despite the unfavorable distribution of FAs in TAG molecules, it was characterized by a balanced ratio of n-3 to n-6 acids. It was also concluded that research on HO and PO mixtures should be continued due to the potential synergistic effect of their bioactive substances.
Collapse
Affiliation(s)
- Marta Siol
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Natalia Chołuj
- Faculty of Food Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Diana Mańko-Jurkowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Wang Y, Kratzer R, Murkovic M, Eibinger M, Machado Charry E, Li S, Zhang T, Zhang X, Zhang M, Chen H. Fabrication and characterization of a novel zein/pectin/pumpkin seed oil Pickering emulsion and the effects of myricetin on oxidation stability. Int J Biol Macromol 2023; 253:127386. [PMID: 37838112 DOI: 10.1016/j.ijbiomac.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, zein/pectin/pumpkin seed oil (PSO) Pickering emulsions (ZPPEs) were fabricated loading with myricetin (MYT), and the quality control methods of oxidation stability were innovatively investigated. The microstructure and particle properties of zein-pectin particles were determined. The zein to pectin ratio of 5:3 and oil phase fraction (φ = 50 %) turned out as the most optimal conditions for the stabilization of myricetin-loaded ZPPEs. The expected oil-in-water emulsion-type structure was confirmed by confocal laser scanning microscopy (CLSM). The internal 3D structure of Pickering emulsions (Lugol's solution improved the water-phase contrast) was imaged by micro-computed tomography (Micro-CT) for the first time. Results showed a sponge like structure of water phase in emulsion with 42 μm as mean droplet size. Light-induced oxidation was evaluated with the PetroOxy method and malondialdehyde (MDA) assays. Encapsuling ZPPEs with MYT could prevent the light induced oxidation, especially, loading of MYT at the core of the emulsion. The analysis of Electronic nose (E-nose) was used to analyze the odor before and after UV-induced oxidation, and showed a good discrimination. This study provided a new approach to prepare ZPPEs with high oxidation stability. Micro-CT, PetroOxy and E-nose could be new methods for characterization and quality assessment of Pickering emulsions.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | | | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
5
|
ØYE G, SIMON S, RUSTAD T, PASO K. Trends in Food Emulsion Technology: Pickering, Nano and Double Emulsions. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Šamec D, Loizzo MR, Gortzi O, Çankaya İT, Tundis R, Suntar İ, Shirooie S, Zengin G, Devkota HP, Reboredo-Rodríguez P, Hassan STS, Manayi A, Kashani HRK, Nabavi SM. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Compr Rev Food Sci Food Saf 2022; 21:4422-4446. [PMID: 35904246 DOI: 10.1111/1541-4337.13013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The growing interest in foods that can be beneficial to human health is bringing into focus some products that have been used locally for centuries but have recently gained worldwide attention. One of these foods is pumpkin seed oil, which has been used in culinary and traditional medicine, but recent data also show its use in the pharmaceutical and cosmetic industries. In addition, some sources refer to it as a potential functional food, mainly because it is obtained from pumpkin seeds, which contain many functional components. However, the production process of the oil may affect the content of these components and consequently the biological activity of the oil. In this review, we have focused on summarizing scientific data that explore the potential of pumpkin seed oil as a functional food ingredient. We provide a comprehensive overview of pumpkin seed oil chemical composition, phytochemical content, biological activity, and safety, as well as the overview of production processes and contemporary use. The main phytochemicals in pumpkin seed oil with health-related properties are polyphenols, phytoestrogens, and fatty acids, but carotenoids, squalene, tocopherols, and minerals may also contribute to health benefits. Most studies have been conducted in vitro and support the claim that pumpkin seed oil has antioxidant and antimicrobial activities. Clinical studies have shown that pumpkin seed oil may be beneficial in the treatment of cardiovascular problems of menopausal women and ailments associated with imbalance of sex hormones.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Koprivnica, Croatia
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Olga Gortzi
- School of Agricultural Sciences, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - İrem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - İpek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Galdino de Souza D, Santos DS, Simon KS, Morais JAV, Coelho LC, Pacheco TJA, Azevedo RB, Bocca AL, Melo-Silva CA, Longo JPF. Fish Oil Nanoemulsion Supplementation Attenuates Bleomycin-Induced Pulmonary Fibrosis BALB/c Mice. NANOMATERIALS 2022; 12:nano12101683. [PMID: 35630905 PMCID: PMC9145453 DOI: 10.3390/nano12101683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Diets rich in omega-3 or -6 fatty acids will produce different profiles for cell membranes phospholipid constitutions. Omegas 3 and 6 are part of the diet and can modulate the inflammatory profile. We evaluated the effects of the oral absorption of fish oil, when associated with a lipid nanoemulsion in an experimental pulmonary inflammatory model. Pulmonary fibrosis is a disease associated with excessive extracellular matrix deposition. We determined to investigate the morphophysiological mechanisms in mice that were pretreated after induction with bleomycin (BLM). The pretreatment was for 21 days with saline solution, sunflower oil (SO), fish oil (FO), and fish oil nanoemulsion (NEW3). The animals received a daily dose of 50 mg/Kg of docosahexaenoic acid DHA and 10 mg/Kg eicosapentaenoic (EPA) (100 mg/Kg), represented by a daily dose of 40 µL of NEW3. The blank group was treated with the same amount daily (40 µL) during the 21 days of pretreatment. The animals were treated with SO and FO, 100 mg/Kg (containing 58 mg/Kg of polyunsaturated fats/higher% linoleic acid) and 100 mg/Kg (50 mg/Kg of DHA and 10 mg/Kg EPA), respectively. A single dose of 5 mg/mL (50 μL) bleomycin sulfate, by the intratracheal surgical method in BALB/cAnNTac (BALB/c). NEW3 significantly reduced fibrotic progression, which can be evidenced by the protection from loss of body mass, increase in respiratory incursions per minute, decreased spacing of alveolar septa, decreased severity of fibrosis, and changes in the respiratory system. NEW3 attenuated the inflammatory changes developed in the experimental model of pulmonary fibrosis, while group SO showed a significant increase in inflammatory changes. This concluded that the presented results demonstrated that is possible to positively modulate the immune and inflamamtory response to an external agressor, by changing the nutitional intake of specific fatty acids, such as omega-3 placed in fish oil. Moreover, these benefits can be improved by the nanoencapsulation of fish oil in lipid nanoemulsions.
Collapse
Affiliation(s)
- Danielle Galdino de Souza
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Débora Silva Santos
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Karina Smidt Simon
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - José Athayde Vasconcelos Morais
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Luísa Coutinho Coelho
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - Thyago José Arruda Pacheco
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Anamélia Lorenzetti Bocca
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - César Augusto Melo-Silva
- Respiratory Physiology Laboratory, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil;
| | - João Paulo Figueiró Longo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
- Correspondence:
| |
Collapse
|
8
|
Optimization of Biodiesel Production Parameters from Cucurbita maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach. J CHEM-NY 2022. [DOI: 10.1155/2022/8516163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of biodiesel from vegetables or fruits waste oils has high potential as renewable energy. The Cucurbita maxima wastes are massive source of oils, which are believed to indicate the possible sources of renewable energy whose biodiesel can be produced. Hence, the study explores the potential of the Cucurbita maxima wastes, for the production of biodiesel. In this study, the Soxhlet extraction method was used to extract Cucurbita maxima waste oil using an organic solvent. Through Box-Behnken design (BBD), the effects of methanol to oil molar ratio (6–10), catalyst concentration (2–6%), and reaction time (45–75 min) on the transesterification efficiency of methyl esters were investigated. The oil contents of Cucurbita maxima waste was found to be
%. This oil was characterized, and after obtaining the pure characterized oil, biodiesel was produced using microwave assisted by the transesterification process. The optimum conversion efficiency of the Cucurbita maxima waste oil to fatty acid methyl ether was 97.76%, at the optimal parameters, methanol to oil ratio (8.4 : 1), catalyst concentration (3.14%), and reaction time (57.12 min). The results revealed that all parameters have a significant effect on the yield of biodiesel (
). The physicochemical properties reveal that the Cucurbita maxima waste oil could be applied as a potential source of material for methyl ester production. The fatty acid profile of the oil indicated that it was mainly composed of unsaturated fatty acid, which ensures good flow properties of the fuel. The results of these studies showed the prospective of Cucurbita maxima wastes as a new potential feedstock for biodiesel production.
Collapse
|
9
|
High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Zhou S, Wen Y, Duan Y, Li Q, Gao Y, Yu X. Functional Properties and Composition of New “Nut” Oil Obtained from
Xanthium sibiricum
Seeds. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sheng Zhou
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yuxiu Wen
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yiting Duan
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Qi Li
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yuan Gao
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Xiuzhu Yu
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
11
|
Yang E, Lee JW, Chang PS, Park IK. Development of chitosan-coated nanoemulsions of two sulfides present in onion (Allium cepa) essential oil and their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69200-69209. [PMID: 34291413 DOI: 10.1007/s11356-021-15451-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a plant parasitic nematode which causes severe damage to several Pinus species. Two natural compounds, dipropyl trisulfide (DPTS) and methyl propyl trisulfide (MPTS), showed strong nematicidal activity against the pine wood nematode, presenting 4.24 and 17.81 μg/mL LC50 values, respectively. However, hydrophobicity and low stability have limited their practical use in the field as nematicides. To overcome these problems, chitosan-coated nanoemulsions of DPTS and MPTS were developed. The optimum chitosan concentration for the delivery system of the two sulfides was 0.5%. Optimized chitosan-coated nanoemulsions of sulfides have a uniform size distribution (mean diameter = 203.7 and 207.7 nm, mean polydispersity index = 0.176 and 0.178) with sufficient colloidal stability (mean zeta potential = +40 and +45 mV). The LC50 values of DPTS and MPTS nanoemulsions coated with 0.5% chitosan against the pine wood nematode were 5.01 and 16.60 μg/mL, respectively. In addition, chitosan coating improved the long-term storage stability and persistence of nematicidal activity of the nanoemulsions. This study indicates that the chitosan-coated nanoemulsion is a suitable formulation for sulfides as novel nematicides against the pine wood nematode for field application.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Woo Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Il-Kwon Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Sharma M, Bhat R. Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil). Foods 2021; 10:foods10040787. [PMID: 33917570 PMCID: PMC8067522 DOI: 10.3390/foods10040787] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Natural pigments improve aesthetic value as well as antioxidant potential of a food product. This study was designed to determine the effects of green extraction techniques on carotenoids, polyphenols and antioxidant activities of pulp and peel of two varieties of pumpkin (Cucurbita maxima). Innovative green extractions (IGE; Ultrasound and Microwave-Assisted Extractions) synergised with corn oil (used as green solvent) were compared with conventional extraction (CE; hexane/isopropyl alcohol; 60:40, v/v). Results showed total carotenoids to be almost double on employing IGE (PM2-UAE-peel = 38.03 ± 4.21; PM4-UAE-peel = 33.78 ± 1.76 µg/g) when compared to conventional extraction (PM2-CE-peel = 19.21 ± 4.39; PM4-CE-peel = 16.21 ± 2.52 µg/g). Polyphenolic contents ranged between 510.69 ± 5.50 and 588.68 ± 7.26 mg GAE/100 g of extract in IGE, compared with conventional extracts (269.50 ± 2.17 to 318.46 ± 6.60 mg GAE/100 g) and percent inhibition of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) ranging between 88.32 ± 1.51 and 93.53 ± 0.30% in IGE when compared with conventional extraction (50.61 ± 1.44 to 57.79 ± 2.09%). Further, oxidative stability of carotenoids extracts from IGE (protection factor = 1.59 ± 0.01 to 1.81 ± 0.05) were found to be significantly higher (p < 0.05) than conventional extracts. Based on results, this study supports the use of innovative green extraction techniques to obtain bioactive pigments like carotenoids. It is anticipated that results generated will find potential applications in food, pharmaceutical and cosmetic industries.
Collapse
|