1
|
Liu C, Wei X, Zhang Z, Miao Q, Prejanò M, Marino T, Tao Y, Li Y. Color protection, aroma enhancement and sensory improvement of red wines: Comparison of pre-fermentation additions of cyclodextrins and polysaccharides. Food Chem 2025; 477:143432. [PMID: 40031134 DOI: 10.1016/j.foodchem.2025.143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
The effect of pre-fermentation single additions of four cyclodextrins (CDs) as stabilizing factors on the color, aroma, and sensory characteristics of red wines was systematically investigated for the first time and compared with control and single polysaccharide treatments. The results showed that α-cyclodextrin (α-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) increased red-green color channel (a⁎) by 41.85 % and 28.84 %, respectively, compared to the control group, exhibiting a stronger copigmentation effect than the three polysaccharides. Mantel test and heatmap analyses revealed that α-CD enhanced color stability by promoting copigmentation between phenolics and monomeric anthocyanins, whereas HP-β-CD enhanced color through direct copigmentation with anthocyanins. Furthermore, volatile compound content and principal component analysis demonstrated that α-CD and HP-β-CD effectively protected esters and selectively protected alcohols, compared to the control and polysaccharide treatments. Sensory evaluation confirmed that HP-β-CD and α-CD improved the sensory profile by enhancing color appeal, rich floral and fruity aromas, and harmonious taste.
Collapse
Affiliation(s)
- Caiyun Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xibu Wei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zengshuai Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qianqian Miao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning 750104, China
| | - Yunkui Li
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning 750104, China.
| |
Collapse
|
2
|
Chen L, Wang Z, Wu X, Zhang Q, Ni Y. Comparison on the conformation folding and structure change of serum albumin induced by methyl parathion and its metabolite p-nitrophenol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106393. [PMID: 40262891 DOI: 10.1016/j.pestbp.2025.106393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Residues of organophosphorus pesticides (OPPs) and their metabolites pose potential risks to the environment and human health. In the work, multiple spectroscopy, atomic force microscope and computational simulations were utilized to compare the interaction between methyl parathion (MP) and its metabolite p-nitrophenol (PNP) with human serum albumin (HSA). The results showed that both MP and PNP spontaneously formed complexes with HSA predominantly facilitated by hydrogen bonds and van der Waals forces, following static quenching mechanisms. The binding constant of PNP (15.16 ± 0.10 × 104 L mol-1) with HSA was nearly 5 times larger than that of MP (3.58 ± 0.09 × 104 L mol-1), suggesting PNP had a stronger affinity with HSA, which was consistent with density functional theory (DFT) calculation. Molecular docking revealed that the binding energy of PNP (-4.54 kcal mol-1) was lower than that of MP (-4.07 kcal mol-1), which potentially contributed a longer in vivo half-life of PNP and greater potential harm. Moreover, synchronous, 3D, FTIR and CD spectroscopy analyses indicated that the binding of MP and PNP to HSA significantly altered the microenvironment of amino acid residues and the secondary structure of HSA. Molecular dynamics simulations further demonstrated these findings. The study provides insights on the interaction between the pesticide MP and its metabolite PNP with HSA, which help understand the impact of pesticide residues on the food safety and environmental protection at the molecular level.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xianglong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Bao Y, Wang Y, Liu H, Lan J, Li Z, Zong W, Zhao Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life (Basel) 2025; 15:112. [PMID: 39860052 PMCID: PMC11766571 DOI: 10.3390/life15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems. The experimental results show that TCS significantly inhibits HSA esterase activity, with exacerbating inhibition in the presence of PSNPs, which is attributed to the alteration of HSA conformation and microenvironment of the amino acid residues induced by PSNPs. Molecular docking and site marker competitive studies indicate that TCS predominantly binds to site I of subdomain Sudlow II and the presence of PSNPs does not affect the binding sites. Spectra analyses indicate that the quenching mechanism between TCS and HSA belongs to the static quenching type and the presence of PSNPs does not change the fluorescence quenching type. The HSA fluorescence quenching and the conformational alterations induced by TCS are further enhanced in the presence of PSNPs, indicating that PSNPs enhance the binding of TCS to HSA by making TCS more accessible to the binding sites. This study provides valuable information about the toxicity of PSNPs and TCS in case of co-exposure.
Collapse
Affiliation(s)
- Yan Bao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yaoyao Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Hongbin Liu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Zhicai Li
- Anqiu Branch of Weifang Municipal Bureau of Ecology and Environment, Weifang 262199, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zongshan Zhao
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Liu Y, Yuan Z, Zhao P, Li C, Qin L, Zhao T, Zhu X, Feng S. Studies on the binding of wedelolactone to human serum albumin with multi-spectroscopic analysis, molecular docking and molecular dynamic simulation. Biophys Chem 2024; 307:107198. [PMID: 38359582 DOI: 10.1016/j.bpc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Wedelolactone (WEL) is a small molecule compound isolated from Eclipta prostrate L., which has been reported to possess various biological activities such as anti-hepatotoxicity, anti-hypertension, anti-tumour, anti-phospholipase A2 and detoxification activity against snake venom. In the present study, we investigated the interaction of WEL with human serum albumin (HSA) using simultaneous fluorescence, UV-visible spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), molecular docking technique and molecular dynamics simulation. We found that the interaction between HSA and WEL can exhibit a static fluorescence burst mechanism, and the binding process is essentially spontaneous, with the main forces manifested as hydrogen bonding, van der Waals force and electrostatic interactions. Competitive binding and molecular docking studies showed that WEL preferentially bound to HSA in substructural region IIA (site I); molecular dynamics simulations showed that HSA interacted with WEL to form a stable complex, which also induced conformational changes in HSA. The study of the interaction between WEL and HSA can provide a reference for a more in-depth study of the pharmacodynamic mechanism of WEL and its further development and utilisation.
Collapse
Affiliation(s)
- Yali Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Yuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Changxin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Qin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianlun Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shuai Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
5
|
Niu T, Zhu X, Zhao D, Li H, Yan P, Zhao L, Zhang W, Zhao P, Mao B. Unveiling interaction mechanisms between myricitrin and human serum albumin: Insights from multi-spectroscopic, molecular docking and molecular dynamic simulation analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121871. [PMID: 36155929 DOI: 10.1016/j.saa.2022.121871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Myricitrin is a natural polyhydroxy flavonoid and is mainly derived from the bark and leaves of the Chinese Bayberry tree (Myrica rubra). It has different pharmacological activities, including antioxidative, anti-inflammatory, hypoglycemic, antiviral, liver protection and cholagogue properties, and may be added to foods, pharmaceuticals, and cosmetic products for antioxidant purposes. In this study, the interaction mechanism between myricitrin and human serum albumin (HSA) was investigated using spectroscopic methods, molecular docking techniques, and molecular dynamic simulations. We showed that the HSA/myricitrin interaction exhibited a static fluorescence quenching mechanism, and that binding processes were spontaneous in nature, with the main forces exemplified by hydrogen bonding, hydrophobic interactions, and electrostatic interactions. Fluorescence spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, synchronous fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, micro-Fourier transform infrared spectroscopy (micro-FTIR), and circular dichroism (CD) spectroscopy showed that myricitrin binding altered the HSA conformation to some extent. Competitive binding and molecular docking studies showed that the preferred binding of myricitrin on HSA was in the sub-structural domain IIA (Site I); molecular dynamic simulations revealed that myricitrin interacted with HSA to produce a well stabilized complex, and it also generated a conformational change in HSA. The antioxidant capacity of the HSA-myricitrin complex was reduced when compared with free myricitrin. The identification of HSA-myricitrin binding mechanisms provides valuable insights for the application of myricitrin to the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Tianmei Niu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Huifen Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Lulu Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Wenguang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| | - Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
6
|
Liu Y, Wei F, Xu R, Cheng T, Ma Y. Insights into the Binding Interaction of Catechol 1,2-Dioxygenase with Catechol in Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 2023; 195:298-313. [PMID: 36074236 DOI: 10.1007/s12010-022-04129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Microbial remediation has become one of the promising ways to eliminate polycyclic aromatic hydrocarbons (PAHs) pollution due to its efficient enzyme metabolism system. Catechol 1,2-dioxygenase (C12O) is a crucial rate-limiting enzyme in the degradation pathway of PAHs in Achromobacter xylosoxidans DN002 that opens the benzene ring through the ortho-cleavage pathway. However, little attention has been given to explore the interaction mechanism of relevant enzyme-substrate. This study aims to investigate the binding interaction between C12O of strain DN002 and catechol by means of a molecular biological approach combined with homology modeling, molecular docking, and multiple spectroscopies. The removal rate of catechol in the mutant strain of cat A deletion was only 12.03%, compared to the wild-type strain (54.21%). A Ramachandran plot of active site regions of the primary amino acid sequences in the native enzyme showed that 93.5% sequences were in the most favored regions on account of the results of homology modeling, while an additional 6.2% amino acid sequences were found in conditionally allowed regions, and 0.4% in generously allowed regions. The binding pocket of C12O with catechol was analyzed to obtain that the catalytic trimeric group of Tyr164-His224-His226 was proven to be great vital for the ring-opening reaction of catechol by molecular docking. In the native enzyme, binding complexes were spontaneously formed by hydrophobic interactions. Binding constants and thermodynamic potentials from fluorescence spectra indicated that catechol effectively quenched the intrinsic fluorescence of C12O in the C12O/catechol complex via conventional static and dynamic quenching mechanisms of C12O. The results of ultraviolet and visible (UV) spectra, synchronous fluorescence, and circular dichroism (CD) spectra revealed conspicuous changes in the local conformation, and site-directed mutagenesis confirmed the role of predicted key residues during catalysis, wherein His226 had a significant effect on catechol utilization by C12O. This is the first report to reveal interactions of C12O with substrate from the molecular docking results, providing the mechanistic understanding of representative dioxygenases involved in aromatic compound degradation, and a solid foundation for further site modifications as well as strategies for the directed evolution of this enzyme.
Collapse
Affiliation(s)
- Yani Liu
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Fengdan Wei
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Rui Xu
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Tao Cheng
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
7
|
Inhibition mechanism of baicalein against alcohol dehydrogenase in vitro via biological techniques, spectroscopy and computer simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Li N, Yang X, Chen F, Zeng G, Zhou L, Li X, Tuo X. Spectroscopic and in silico insight into the interaction between dicofol and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120277. [PMID: 34455384 DOI: 10.1016/j.saa.2021.120277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Dicofol, a broad-spectrum acaricide, has garnered considerable attention because of the potential harm to the environment and various organisms. Herein, this study applied spectroscopic and in silico methods to understand the interaction between human serum albumin (HSA) and dicofol. Fluorescence experiments demonstrated that dicofol formed a stable complex and the binding process occurred in Suldow's site I of HSA. Its binding constant was 2.26 × 105 M-1 at 298 K. Van der Waals forces and hydrogen bond were primarily facilitated the interaction between dicofol and HSA (ΔH < 0, ΔS < 0) according to thermodynamic experiments. Additionally, 3D fluorescence and circular dichroism (CD) spectra revealed a few conformational changes in HSA due to dicofol. Molecular docking analysis indicated that dicofol interacted with Ser192, Gln196, Leu481, Arg218, Leu238, and Phe211 via van der Waals forces and formed a hydrogen bond with His242. Molecular dynamics (MD) simulation showed that Lys195 and Arg218 residues contributed greater energy for forming the HSA-dicofol complex. MD simulation analysis also showed that dicofol can affect the HSA structure with a reduction in α-helix. This research is desired to facilitate a new perspective on the toxicity mechanism of dicofol in the human body.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xi Yang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Like Zhou
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoke Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|