1
|
Kulczyński B, Suliburska J, Gramza-Michałowska A, Sidor A, Kowalczewski PŁ, Brzozowska A. The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot ( Beta vulgaris L.). Molecules 2024; 29:5509. [PMID: 39683669 DOI: 10.3390/molecules29235509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Osmotic dehydration as a process of removing water from food by immersing the raw material in a hypertonic solution is used primarily to extend the shelf life of products and as a pretreatment before further processing steps, such as drying and freezing. However, due to the bi-directional mass transfer that occurs during osmotic dehydration, the process can also be used to shape sensory properties and enrich the plant matrix with nutrients. The purpose of this study was to evaluate the effect of osmotic dehydration on the absorption of potassium by beet pulp immersed in various hypertonic solutions (sucrose, inulin, erythritol, xylitol solutions) with the addition of three chemical forms of potassium (gluconate, citrate, chloride) using variable process conditions. The study proved that osmotic dehydration is an effective way to enrich food. The highest potassium content (5779.03 mg/100 g) was found in a sample osmotically dehydrated in a 50% erythritol solution with 5.0% potassium chloride addition with a process that lasted 180 min and took place at 30 °C. The results obtained indicate the high potential of osmotic dehydration in improving the health values of food products. In addition, the antioxidant activity and proximate composition of osmotically dehydrated samples were also characterized in this study.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
2
|
Barragán-Iglesias J, Rodríguez-Ramírez J, Méndez-Lagunas LL. Microstructural modification of papaya tissue during calcium diffusion: Effects on macrostructure level. Food Res Int 2023; 174:113491. [PMID: 37986494 DOI: 10.1016/j.foodres.2023.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/20/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023]
Abstract
The microstructural changes in papaya tissue during calcium diffusion, the effect on drying kinetics and texture parameters were investigated. Calcium pretreatment was applied to papaya samples for 3 h, at a solution concentration of 1.5 g Ca(OH)2/100 mL H2O, and a solution temperature of 25 °C; subsequently, the samples were convectively dried at 70 °C, air flow of 1.5 m/s, and a relative humidity of 5 ± 2%. Calcium content was determined using the Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) technique, the microstructure of the samples was analyzed by High-Resolution Scanning Electron Microscopy (HR-SEM), and the elementary analysis was performed by Energy-Dispersive X-ray Spectroscopy (EDS). Effective diffusivity of calcium (DefCa) and moisture (Defw) were calculated during pretreatment and drying, respectively and texture parameters were determined by double compression using a texturometer. The transport mechanism determined during calcium pretreatment was diffusion with a DefCa = 3.10 × 10-10 m2/s. Also, branched calcium microstructures in the cell walls of tissue were observed due to the calcium effect, it was supported by elemental analysis, which showed an increase of calcium in section restructured compared to non-restructured. During drying, Defw = 1.86 × 10-9 m2/s was higher in pretreated compared to non-pretreated samples with Defw = 1.17 × 10-9 m2/s, indicating a higher drying rate and moisture loss. The texture values changed significantly (α ≤ 0.05) due to calcium pretreatment and drying; the calcium microstructures caused higher cohesiveness, springiness, gumminess, and chewiness. Calcium modifies the microstructure and composition of papaya tissue; therefore, drying kinetics and texture parameters depend on this modification.
Collapse
Affiliation(s)
- Josué Barragán-Iglesias
- Instituto Politécnico Nacional-CIIDIR Oaxaca, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán, Oaxaca C.P. 71230, Mexico; Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Insurgentes Sur 1582, Colonia Crédito Constructor, Alcaldía Benito Juárez C.P. 03940, Mexico
| | - Juan Rodríguez-Ramírez
- Instituto Politécnico Nacional-CIIDIR Oaxaca, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán, Oaxaca C.P. 71230, Mexico.
| | - Lilia L Méndez-Lagunas
- Instituto Politécnico Nacional-CIIDIR Oaxaca, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán, Oaxaca C.P. 71230, Mexico
| |
Collapse
|
3
|
Wang X, Feng H. Investigating the Role Played by Osmotic Pressure Difference in Osmotic Dehydration: Interactions between Apple Slices and Binary and Multi-Component Osmotic Systems. Foods 2023; 12:3179. [PMID: 37685112 PMCID: PMC10486890 DOI: 10.3390/foods12173179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
This study was performed to investigate a strategy to interpret the osmotic dehydration (OD) process through a focused exploration of osmotic pressure dynamics. The investigation first delved into the relationship between dehydration rate and the osmotic pressure difference between food and an osmotic solution. Apple slices was used as a model food material, and the OD process was conducted via sucrose, glucose, and maltose. The positive correlation between the osmotic pressure difference between food and osmotic solution and the dehydration rate suggested that this pressure difference served as the primary driving force for mass transfer within the OD process; for example, in 60% wt sucrose solution, the osmotic pressure of the solution decreased from 15.60 MPa to 12.98 MPa in the first 30 min, while the osmotic pressure of fresh apple slices increased from 1.49 MPa to 4.05 MPa; and this correlation between dehydration rate and osmotic pressure difference in product tissue and osmotic solution followed a linear relationship. Then, the study went further to investigate augmenting osmotic pressure of osmotic solution (sucrose and fructose) by adding auxiliary solutes (sodium chloride and calcium lactate). The results showcased that augmenting osmotic pressure within a sugar-based solution could be realized through the introduction of additive solutes, and what is more important is that this augmentation displayed a synergistic effect, which was more pronounced in solutions of lower sugar concentration. For example, the osmotic pressure of 45%wt fructose solution was 8.88 MPa, which could be increased to 10.05 MPa by adding 0.075% wt NaCl, while adding 0.075% wt NaCl to 59.14% wt fructose solution could increase osmotic pressure from 20.57 MPa to 21.22 MPa. In essence, this study proposed a strategic approach to studying the OD process by spotlighting osmotic pressure as a pivotal factor.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA
| |
Collapse
|
4
|
Chen Y, Li X, Xie X, Liu L, Fu J, Wang Q. Maize transcription factor ZmNAC2 enhances osmotic stress tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153948. [PMID: 36812721 DOI: 10.1016/j.jplph.2023.153948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress seriously limits crop yield and quality. Among plant-specific transcription factors families, the NAC family of transcription factors is extensively involved in various growth, development and stress responses. Here we identified a maize NAC family transcription factor ZmNAC2 with inducible gene expression in response to osmotic stress. The subcellular localization showed that it was localized in the nucleus and overexpression of ZmNAC2 in Arabidopsis significantly promoted seed germination and elevated cotyledon greening under osmotic stress. ZmNAC2 also enhanced stomatal closure and decreased water loss in transgenic Arabidopsis. Overexpression of ZmNAC2 activated ROS scavenging and the transgenic lines accumulated less MDA and developed more lateral roots with drought or mannitol treatment. Further RNA-seq and qRT-PCR analysis showed that ZmNAC2 up-regulated a number of genes related to osmotic stress resistance, as well as plant hormone signaling genes. All together, ZmNAC2 enhances osmotic stress tolerance by regulating multiple physiological processes and molecular mechanisms, and exhibits potential as the target gene in crop breeding to increase osmotic stress resistance.
Collapse
Affiliation(s)
- Yiyao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Miano AC, Rojas ML. Engineering strategies for food fortification. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Wawrzyniak N, Gramza-Michałowska A, Pruszyńska-Oszmałek E, Sassek M, Suliburska J. Effects of Calcium Lactate-Enriched Pumpkin on Calcium Status in Ovariectomized Rats. Foods 2022; 11:foods11142084. [PMID: 35885327 PMCID: PMC9325293 DOI: 10.3390/foods11142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effects of enriched pumpkin on calcium status in ovariectomized rats. The study was conducted in sixty female Wistar rats, which were divided into six groups: a group fed a standard diet (C) and five ovariectomized groups fed a standard diet (OVX_C) or a diet with calcium lactate (CaL), with calcium lactate-enriched pumpkin (P_CaL), with calcium lactate and alendronate (CaL_B), or with calcium lactate-enriched pumpkin with alendronate (P_CaL_B). After 12 weeks of the intervention, the rats were sacrificed, and their blood and tissues were collected. The calcium concentrations in serum and in tissues were measured using flame atomic absorption spectrometry (AAS). Serum concentrations of procollagen type-1 amino-terminal propeptide (PINP), parathyroid hormone PTH, estrogen (ES), and osteocalcin (OC) were determined with enzyme-linked immunosorbent assay (ELISA). It was found that enriched pumpkin increased the calcium level in the kidneys (194.13 ± 41.01 mg) compared to the C (87.88 ± 12.42 mg) and OVX_C (79.29 ± 7.66 mg) groups. The addition of alendronate increased the calcium level in the femurs (267.63 ± 23.63 mg) and more than six times in the kidneys (541.33 ± 62.91 mg) compared to the OVX_C group (234.53 ± 21.67 mg and 87.88 ± 12.42 mg, respectively). We found that the CaL, P_CaL, and CaL_B groups had significantly lower PINP serum concentrations (4.45 ± 0.82 ng/mL, 4.14 ± 0.69 ng/mL, and 3.77 ± 0.33 ng/mL) and higher PTH serum levels (3.39 ± 0.54 ng/dL, 3.38 ± 0.57 ng/dL, and 3.47 ± 0.28 ng/dL) than the OVX_C group (4.69 ± 0.82 ng/mL and 2.59 ± 0.45 ng/dL, respectively). In conclusion, pumpkin enriched with calcium lactate affects calcium status and normalizes PINP and PTH serum levels in ovariectomized rats. Diet with enriched pumpkin and alendronate increase calcium concentration in the femur. Enriched pumpkin causes calcium to accumulate in the kidneys of ovariectomized rats; alendronate significantly exacerbates this effect.
Collapse
Affiliation(s)
- Natalia Wawrzyniak
- Department of Human Nutrition and Dietetics, Faculty of Food and Nutrition Science, University of Life Sciences, 60-624 Poznan, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food and Nutrition Science, University of Life Sciences, 60-624 Poznan, Poland;
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, 60-637 Poznan, Poland; (E.P.-O.); (M.S.)
| | - Maciej Sassek
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, 60-637 Poznan, Poland; (E.P.-O.); (M.S.)
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food and Nutrition Science, University of Life Sciences, 60-624 Poznan, Poland;
- Correspondence:
| |
Collapse
|
7
|
Zaremba A, Waszkowiak K, Kmiecik D, Jędrusek-Golińska A, Jarzębski M, Szymandera-Buszka K. The Selection of the Optimal Impregnation Conditions of Vegetable Matrices with Iodine. Molecules 2022; 27:3351. [PMID: 35630828 PMCID: PMC9144381 DOI: 10.3390/molecules27103351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to determine the use of selected vegetables (pumpkin, cauliflower, broccoli, carrot) as carriers of potassium iodide (KI) and potassium iodate (KIO3) by determining changes in iodine content under various conditions of impregnation as the degree of hydration, impregnated sample temperature, and impregnation time. The influence of these conditions on iodine contents in vegetables after their fortification and storage (21 °C/230 days) was analyzed. The results showed that all selected vegetables could be efficient iodine carriers. However, the conditions of the impregnation process are crucial for fortification efficiency, particularly the degree of hydration and the temperature of the impregnated samples before drying. The results showed that the lowest iodine content was in samples fortified at 4 °C and 1:4 hydration. On the other hand, the highest reproducibility of iodine was for the following fortification conditions: temperature of -76 °C and hydration of 1:1. The studies confirmed the higher stability of iodine in KIO3 form compared to KI. To increase recovery of the introduced iodine in the product after drying, using the conditioning step at 4 °C is not recommended. We recommend freezing vegetables immediately after the impregnation process.
Collapse
Affiliation(s)
- Agata Zaremba
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland;
| | - Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| |
Collapse
|
8
|
Arnold M, Rajagukguk YV, Sidor A, Kulczyński B, Brzozowska A, Suliburska J, Wawrzyniak N, Gramza-Michałowska A. Innovative Application of Chicken Eggshell Calcium to Improve the Functional Value of Gingerbread. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074195. [PMID: 35409876 PMCID: PMC8998295 DOI: 10.3390/ijerph19074195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Food waste, such as eggshell, can be an environmental problem if it is not properly managed. One of the ways to solve this is by using the eggshell as the cheap calcium source in food products. Polish gingerbread fortified with chicken eggshell powder (ESP) calcium was developed to solve the eggshell waste problem and to reduce the risk of osteoporosis. This study focused on the effect of ESP addition on basic composition, sensory evaluation, and antioxidative activity of gingerbread. Two samples of gingerbread without and with 3% (w/w of wheat flour) ESP, with controlled green tea powder (4% w/w of white chocolate) were analyzed. Results of the research showed that the addition of 3% ESP significantly increased the ash and calcium content (p < 0.05) without changing the appearance, aroma, texture, taste profiles, and the hedonic score of gingerbread. The gingerbread samples were then stored for 2 months and were analyzed every month. The hedonic evaluation of the aroma of both gingerbread samples decreased significantly (p < 0.05) during storage. During 2 months of storage, the antioxidative activity of gingerbread fortified with 3% ESP was not significantly different compared to the control (p > 0.05), particularly in ABTS and ORACFL assay. The ABTS, DPPH, and ORACFL assays showed decreasing antioxidative activity during storage, which was also in accordance with decreasing total phenolic content of both gingerbread samples. In PCL assay, the lipid-soluble antioxidant activity in gingerbread with 3% ESP was significantly higher during 2 months of storage, compared to the control (p < 0.05). The developed product might be a potential alternative to improve the calcium (26% daily value (DV) recommendation per 100 g) and antioxidant intake in order to prevent calcium deficiency. Gingerbread enriched with an organic source of calcium may become an innovative product to reduce the risk of developing osteoporosis in the elderly population, having potential health and economic significance, given the incidence of osteoporosis and the costs of treating this disease.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Yolanda Victoria Rajagukguk
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Natalia Wawrzyniak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.); (A.S.); (B.K.); (A.B.); (N.W.)
- Correspondence: ; Tel.: +48-61-848-7327
| |
Collapse
|
9
|
High-Pressure Impregnation of Foods: Technology and Modelling Approaches. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09299-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods 2021; 10:foods10112605. [PMID: 34828886 PMCID: PMC8625333 DOI: 10.3390/foods10112605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
The paper presents water diffusion coefficients as providing a significant contribution to the creation of a comprehensive database and knowledge of weight variation during the drying process of raw plant materials that is used for modelling the technological process and designing innovative products. Dehydration is one of the most widely used methods for improving the stability and durability of fruit and vegetables because it reduces water activity and microbial activity, and minimises the physical and chemical changes during storage. The considerable impact of pressure on heat exchange and weight during the convection drying process of osmotically pretreated apples is demonstrated. The course of the drying curves and the drying rate is determined by the use of pressures of 0.02 and 500 MPa. Varied pressure applied during osmotic impregnation significantly influences the value of the diffusion coefficient: the average determined for the entire course of the drying curve and the average determined in the intervals of the reduced water content. The lowest values of the average water diffusion coefficient are obtained for apples preboiled under overpressure conditions and, at the same time, the determined diffusion coefficients in the water content are characterised on the drying curve by a clearly decreasing course until the reduced water content reaches approximately 0.2.
Collapse
|
11
|
Calcium-Enriched Pumpkin Affects Serum Leptin Levels and Fat Content in a Rat Model of Postmenopausal Osteoporosis. Nutrients 2021; 13:nu13072334. [PMID: 34371845 PMCID: PMC8308801 DOI: 10.3390/nu13072334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Because the world’s population is deficient in dietary calcium, it is important to search for new sources of this essential mineral for the bones and the entire body. One of the innovative foods that could act as such a source is pumpkin enriched with calcium lactate by means of osmotic dehydration. Providing the body with easily absorbable calcium may have beneficial effects on the reconstruction of bone tissue. Postmenopausal osteoporosis is associated with body weight and fat mass gain, and the aim of the present study was to evaluate the effect of consuming enriched pumpkin on the levels of adipokines and cytokines produced by the adipose tissue. This study was conducted on 12-month-old female Wistar rats that received nutritional intervention for 12 weeks. After termination of the rats, the levels of leptin, adiponectin, interleukin 31 and interleukin 33 in serum and adipose tissue were determined, and the femurs were examined histopathologically. It was demonstrated that calcium-enriched pumpkin reduced bone marrow femoral adipocytes and also markedly decreased serum leptin levels in groups of rats after ovariectomy, which was associated with a decrease of fat content. Additionally, it seems that calcium-enriched pumpkin may reduce body weight gain often observed after menopause.
Collapse
|
12
|
Effect of the high-pressure assisted-infusion processing on nutritional and antioxidant properties of mango cubes. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrasound (US) is a promising technology, which can be used to improve the efficacy of the processes in food technology and the quality of final product. US technique is used, e.g., to support mass and heat transfer processes, such as osmotic dehydration, drying and freezing, as well as extraction, crystallization, emulsification, filtration, etc. Osmotic dehydration (OD) is a well-known process applied in food processing; however, improvements are required due to the long duration of the process. Therefore, many recent studies focus on the development of OD combined with sonication as a pretreatment method and support during the OD process. The article describes the mechanism of the OD process as well as those of US and changes in microstructure caused by sonication. Furthermore, it focuses on current applications of US in fruits and vegetables OD processes, comparison of ultrasound-assisted osmotic dehydration to sonication treatment and synergic effect of US and other innovative technics/treatments in OD (such as innovative osmotic solutions, blanching, pulsed electric field, reduced pressure and edible coatings). Additionally, the physical and functional properties of tissue subjected to ultrasound pretreatment before OD as well as ultrasound-assisted osmotic dehydration are described.
Collapse
|