1
|
Lopez-Rodulfo IM, Stentoft EW, Martinez MM. Comparative assessment of polyphenol bioaccessibility in cold-pressed apple fractions using static and semi-dynamic digestion models. Food Res Int 2025; 202:115743. [PMID: 39967186 DOI: 10.1016/j.foodres.2025.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
The INFOGEST semi-dynamic digestion model more closely aligns the kinetics of nutrient digestion with structural changes in the food matrix during gastric digestion, which can significantly influence polyphenol bioaccessibility. In this study, the static and semi-dynamic INFOGEST models were compared to assess polyphenol bioaccessibility across various matrix scenarios, using different apple fractions. Each digesta, regardless of the model used, underwent re-solubilization, centrifugal filtration, and UHPLC-ESI-QTOF-MS/MS analysis to approximate transepithelial absorption and facilitate untargeted polyphenol screening and semi-quantification. The semi-dynamic model was initially optimized using whole apple. Overhead stirring with a paddle led to greater browning and degradation of phenolic acids and dihydrochalcones than magnetic stirring, the latter showing bolus stratification and closer physiological conditions for oxygenation and intragastric chyme homogenization. The suitability of a 2 kcal/min gastric emptying rate was tested with pomace, resulting in 8.25 min total gastric emptying time due to low caloric content. Compared to the gastric emptying time of whole apple (139.5 min), the caloric-driven emptying of pomace produced similar polyphenol bioaccessibility but a three-fold higher coefficient of variation (19.5 % vs. 69.4 %). Finally, using several apple fractions, the semi-dynamic setup with magnetic stirring and a fixed gastric emptying rate of 139.5 min showed greater extraction of hydroxybenzoic acids and dihydrochalcones from apple and of hydroxybenzoic and hydroxycinnamic acids from pomace than the static model. However, flavanols in juice degraded more extensively under semi-dynamic conditions. Minimal differences were observed between models for an apple polyphenol extract, indicating that in the absence of matrix, the static setup might be preferred.
Collapse
Affiliation(s)
- Ivan M Lopez-Rodulfo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Emil W Stentoft
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark; Food Technology Area, Department of Agricultural Engineering, University of Valladolid, Spain.
| |
Collapse
|
2
|
Xu H, Wang X, Li H, Xie Y, Ding K, Xu S, Ding S, Wang R. Lily bulb polyphenol oxidase obtained via an optimized multi-stage separation strategy for structural analysis and browning mechanism elucidation. Food Chem 2025; 463:141418. [PMID: 39427459 DOI: 10.1016/j.foodchem.2024.141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
An optimized multi-stage separation strategy was developed to purify lily bulb polyphenol oxidase (PPO) for revealing its molecular structure. The PPO was purified 14.64-fold with high specific activity of 153,900 U/mg via optimized conditions of phosphate buffer pH (6.5), solid-liquid ratio (1:3), PVPP content (2 %), extraction time (4 h), followed by 30 %-50 % ammonium sulfate, diethylaminoethyl ion-exchange chromatography (0.1 M NaCl), and size exclusion chromatography. The PPO was identified as a dimeric protein with molecular weight of 135 kDa, containing 58.79 % random coil, 20.78 % α-helix, 17.41 % β-folding, and 3.02 % β-corner. The three-dimensional structure via homology modeling suggested that active center CuA bound to His151, His172, and His181, CuB bound to His307, His311, and His341. Furthermore, molecular docking indicated that its Phe337 and Tyr312 residues were catalytic cavity gates of catechol and 4-methylcatechol, respectively. Therefore, this study successfully analyzed purified PPO structure and further provided a theoretical foundation for its browning mechanism.
Collapse
Affiliation(s)
- Haishan Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xinyu Wang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Ke Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Saiqing Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Shenghua Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Liu Y, Wang D, Li J, Zhang Z, Wang Y, Qiu C, Sun Y, Pan C. Research progress on the functions and biosynthesis of theaflavins. Food Chem 2024; 450:139285. [PMID: 38631203 DOI: 10.1016/j.foodchem.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.
Collapse
Affiliation(s)
- Yufeng Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Dongyang Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jing Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Zhang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yali Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenxi Qiu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yujiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Tilley A, McHenry MP, McHenry JA, Solah V, Bayliss K. Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Curr Res Food Sci 2023; 7:100623. [PMID: 37954915 PMCID: PMC10637886 DOI: 10.1016/j.crfs.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Enzymatic browning is a biological process that can have significant consequences for fresh produce, such as quality reduction in fruit and vegetables. It is primarily initiated by polyphenol oxidase (PPO) (EC 1.14.18.1 and EC 1.10.3.1) which catalyses the oxidation of phenolic compounds. It is thought that subsequent non-enzymatic reactions result in these compounds polymerising into dark pigments called melanins. Most work to date has investigated the kinetics of PPO with anti-browning techniques focussed on inhibition of the enzyme. However, there is substantially less knowledge on how the subsequent non-enzymatic reactions contribute to enzymatic browning. This review considers the current knowledge and recent advances in non-enzymatic reactions occurring after phenolic oxidation, in particular the role of non-PPO substrates. Enzymatic browning reaction models are compared, and a generalised redox cycling mechanism is proposed. The review identifies future areas for mechanistic research which may inform the development of new anti-browning processes.
Collapse
Affiliation(s)
- Andrew Tilley
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch, 6150, Western Australia, Australia
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - Mark P. McHenry
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
- Mt Lindesay, 56 McHenry Lane, Scotsdale, 6333, Western Australia, Australia
| | | | - Vicky Solah
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch, 6150, Western Australia, Australia
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - Kirsty Bayliss
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
5
|
Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis. Int J Biol Macromol 2023; 240:124353. [PMID: 37059281 DOI: 10.1016/j.ijbiomac.2023.124353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.
Collapse
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yiran Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
6
|
Purification and characterization of polyphenol oxidase from myrtle berries (Myrtus communis L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yıldız S, Bilen Ç, Karakuş E. Purification of damson plum polyphenol oxidase by affinity chromatography and investigation of metal effects on enzyme activity. Prep Biochem Biotechnol 2022; 52:1019-1034. [PMID: 35015975 DOI: 10.1080/10826068.2021.2023825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Polyphenol oxidase (PPO) was firstly purified from damson plum as a high antioxidant source. PPO was treated by 0-80% ammonium sulfate precipitation and dialysis. Characterization results were determined for catechol, 4-methyl catechol, pyrogallol and caffeic acid as 0.05 M/pH: 7.2/25 °C; 0.2 M/pH: 4.5/10 °C; 0.01 M/pH: 6.8/5 °C, and 0.2 M/pH: 8.5/10 °C, respectively. Vmax and KM values were calculated for same substrates as 17,219.97 U/(mL*min) and 11.67 mM; 7309.72 U/(mL*min) and 5 mM; 12,580.12 U/(mL*min) and 3.74 mM; 12,100.41 U/(mL*min) and 6.25 mM, respectively. Catechol gave the highest Vmax value among substrates. Affinity purification was performed by using Sepharose 4B-L-Tyrosine-p-aminobenzoic acid and Sepharose 6B-L-Tyrosine-p-aminobenzoic acid. Single bands were approximately observed at 50 kDa for each affinity sample in SDS-PAGE and Native-PAGE. 93.88 and 10.46 purification-folds were obtained for PPO by reference Sepharose-4B and original Sepharose-6B gels. Metal effects upon PPO activity were also investigated due to the importance of enzymatic browning in foods. Cu+2 activation and Fe+2 inhibition were observed with a final metal concentration of 1 mM at 219.66 and 43.18%, respectively. PPO purification from damson plum by affinity chromatography, its characterization, stability evaluation by statistically, and effects of metal ions on damson plum PPO have not been investigated in the literature.
Collapse
Affiliation(s)
- Selinnur Yıldız
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Çiğdem Bilen
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|