1
|
Wang X, Wang L, Wang L, Zhang C, Kong X, Hua Y, Chen Y. Proteolysis and lipolysis induced by acidification of sesame seeds. Food Chem 2025; 484:144446. [PMID: 40286712 DOI: 10.1016/j.foodchem.2025.144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/15/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Vinegar-soaked seeds can be consumed as functional foods, and the acidification of vacuoles during seed germination is key for protein mobilization. Inspired by these, sesame seeds, containing proteases with peak activity at pH 4.5, were soaked in a 2 % acetic acid solution at 25 °C. Transmission electron microscopy showed that the acidic sesame proteases localized in protein storage vacuoles (PSVs), while liquid chromatography tandem mass spectrometry identified nine lipases. The seeds were acidified to pH 4.5 within 9 h, and the proteases were fully activated to hydrolyze the storage proteins and tonoplast of PSVs. The proteases were released and attacked almost all organelles. Oil body membrane proteins were degraded, causing the inner oil accessible to lipases. By 7 days of soaking, the protein components in the soaking system consisted of 39 % small peptides and 31 % free amino acids, while the oil was hydrolyzed into 26 % free fatty acids and 13 % diacylglycerols.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lijuan Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Caimeng Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yeming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Liang Y, Zu XY, Zhao YN, Li YQ, Wang CY, Zhao XZ, Wang H. Research on the Synergistic Inhibition of Angiotensin-Converting Enzyme (ACE) by the Gastrointestinal Digestion Products of the ACE Inhibitory Peptide FPPDVA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24463-24475. [PMID: 39436688 DOI: 10.1021/acs.jafc.4c05518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
To gain a deeper understanding of the ACE inhibition effect, the inhibitory effect of ACE-inhibiting peptide (ACEIP) FPPDVA's digestive products on ACE was further investigated. Two novel peptides, PD (IC50 = 161.1 ± 1.10 μM) and DV (IC50 = 66.51 ± 0.99 μM) were identified in the digestive products of FPPDVA using LC-MS/MS. The Peptide Mix (FPPDVA, PD, and DV) exhibited a remarkable synergistic effect on ACE inhibition by significantly enhancing it by up to 508% compared to the individual peptides alone. Furthermore, theoretical simulations suggest that the Peptide Mix synergistically inhibits ACE activity by forming more stable complexes with the active site of ACE, facilitated by an increased number of hydrogen bonds. Additionally, Lineweaver-Burk plot analysis and spectroscopic studies further verified the presence of these stable complexes. ITC results show that the combination of Peptides Mix and ACE is a spontaneous exothermic process driven by entropy. The study showed that FPPDVA has a stronger inhibitory effect on ACE after digestion, making it suitable as an antihypertensive peptide in functional foods.
Collapse
Affiliation(s)
- Yan Liang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xin-Yu Zu
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ya-Nan Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ying-Qiu Li
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Chen-Ying Wang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xiang-Zhong Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hua Wang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
3
|
Wu D, Wu W, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Tailoring soy protein/corn zein mixture by limited enzymatic hydrolysis to improve digestibility and functionality. Food Chem X 2024; 23:101550. [PMID: 39022785 PMCID: PMC11252778 DOI: 10.1016/j.fochx.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to modify plant protein mixture to improve their functionality and digestibility by limited hydrolysis. Soy protein isolate and corn zein were mixed at the ratio of 5:1 (w/w), followed by limited hydrolysis using papain from 15 to 30 min. The structural characteristics, in vitro digestibility, and functional properties were evaluated. Also, DPPH radical scavenging activity was determined. The results indicated that the molecular weight of different modified samples was largely reduced by limited hydrolysis, and the proportion of random coil was significantly increased. Furthermore, the solubility, foaming, emulsifying and water-holding capacity of hydrolyzed protein mixture were significantly improved, which were close to those of whey protein isolate. In vitro digestibility after 30-min limited hydrolysis was remarkably elevated. In addition, the hydrolyzed protein mixture exhibited a higher antioxidant activity than those of untreated proteins. Overall, limited hydrolysis of protein mixture led to improved digestibility, functionality and antioxidant activity.
Collapse
Affiliation(s)
- Dongjing Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
4
|
Zhou Q, Wang L, Zhang Y, Zhang C, Kong X, Hua Y, Chen Y. Characterization of mung bean endogenous proteases and globulins and their effects on the production of mung bean protein. Food Chem 2024; 442:138477. [PMID: 38278107 DOI: 10.1016/j.foodchem.2024.138477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Mung bean protein possesses several health benefits, and aqueous processing methods are used for its production. However, mung bean protein yields are different with different methods, which are actually different in conditions (e.g., pH, temperature, and time). Herein, liquid chromatography tandem mass spectrometry identified 28 endopeptidases and exopeptidases in mung bean protein extract, and the positions of 8S and 11S globulins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel were confirmed in our experimental conditions. The SDS-PAGE, trichloroacetic acid-nitrogen solubility index, and free amino acid analysis revealed that (1) 8S globulins showed strong resistance to the endopeptidases (optimal at pH 5 and 50 °C) at pH 3-9, and 11S globulin exhibit strong resistance expect at pH 3-3.5; (2) the exopeptidases (optimal at pH 6 and 50 °C) preferred to liberate methionine and tryptophan. These proteases negatively affected protein yield, and short production time and low temperature were recommended.
Collapse
Affiliation(s)
- Qianqian Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yaowen Zhang
- College of Agriculture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taiyuan 030031, China
| | - Caimeng Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yeming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Nisov A, Valtonen A, Aisala H, Spaccasassi A, Walser C, Dawid C, Sozer N. Effect of peptide formation during rapeseed fermentation on meat analogue structure and sensory properties at different pH conditions. Food Res Int 2024; 180:114070. [PMID: 38395559 DOI: 10.1016/j.foodres.2024.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides. On the other hand, fermentation removed the intensive off-odour and flavour notes present in the native raw material. Several control treatments were produced to understand the reasons behind the hindered fibrous structure formation and induced bitterness. The results obtained from peptidomics, free amino ends, and solubility analyses strongly indicated that the proteins were hydrolysed by endoproteases activated during the fermentation process. Furthermore, it was suspected that the proteins and/or peptides formed complexes with other components, such as hydrolysis products of glucosinolates and polysaccharides.
Collapse
Affiliation(s)
- Anni Nisov
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Anniina Valtonen
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland
| | - Heikki Aisala
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Christoph Walser
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Nesli Sozer
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| |
Collapse
|
6
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
7
|
Qin A, Li X, Yang F, Yang J, Li H, Li H, Yu J. Extensively hydrolysed sodium caseinate. Part I: selection of enzymes, molecular mass distribution, and allergy site analysis by liquid chromatography-mass spectrometry. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Chen Y, Liao X, Zhang C, Kong X, Hua Y. Hydrolyzing behaviors of endogenous proteases on proteins in sesame milk and application for producing low-phytate sesame protein hydrolysate. Food Chem 2022; 385:132617. [DOI: 10.1016/j.foodchem.2022.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
9
|
Chen Y, Pei H, Dai Q, Zhang C, Kong X, Hua Y. Raw walnut kernel: A natural source for dietary proteases and bioactive proteins. Food Chem 2022; 369:130961. [PMID: 34479012 DOI: 10.1016/j.foodchem.2021.130961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
Walnut kernels are health-promoting nuts, which are mainly attributed to polyunsaturated fatty acids, phenolics, and phytosterols. However, the information concerning benefits of walnut proteins are limited. In this study, endopeptidases, aminopeptidases, carboxypeptidases, superoxide dismutases, catalases, and phospholipases with respective relative abundance of 2.730, 1.728, 0.477, 3.148, 0.743, and 0.173‰ were identified by liquid chromatography tandem mass spectrometry. These endogenous proteases exhibited activity in a broad pH range of 2-6.5, and optimal at pH 4.5 and 50 °C. Aspartic endopeptidases were predominant endopeptidases, followed by cysteine ones. There were two types of aspartic endopeptidases, one (not inhibited by pepstatin A) exerted activity at pH 2-3 and the other (inhibited by pepstatin A) optimal at pH 4.5. Carboxypeptidases were optimal at pH 4.5, and aminopeptidases exerted activity at pH near 6.5. These endogenous proteases assisted the digestion of walnut proteins, and soaking, especially peeling, greatly improved the in vitro digestibility.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Haoming Pei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Chen Y, Li H, Zhang C, Kong X, Hua Y. Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Huina Li
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
11
|
Chen Y, Li H, Shen Y, Zhang C, Kong X, Li X, Hua Y. Endopeptidases, exopeptidases, and glutamate decarboxylase in soybean water extract and their in vitro activity. Food Chem 2021; 360:130026. [PMID: 34023711 DOI: 10.1016/j.foodchem.2021.130026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
The proteolytic activity of some soybean endogenous proteases have been clarified in the previous studies, but the information concerning the roles of these proteases and some other unknown ones during soybean processing are scarce. Herein, 16 endopeptidases, 13 exopeptidases, 24 inhibitors (two serpin-ZX and one subtilisin inhibitor firstly identified), and one glutamate decarboxylase were identified in the soybean water extract by the liquid chromatography tandem mass spectrometry analysis. Amongst the identified endopeptidases, just the aspartic endopeptidases (optimal at pH 2.5-3 and 35-45 °C) showed the detectable proteolytic activity by the tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis and protease inhibitor assay analyses, whereas serine, cysteine, and metallo- endopeptidases (except P34 probable thiol protease) did not. Free amino acid analysis showed that the exopeptidases and glutamate decarboxylase were optimal at pH 6 and 45 °C, and by 6 h incubation, the free amino acids and γ-aminobutyric acid almost doubled.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huina Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Sesame water-soluble proteins fraction contains endopeptidases and exopeptidases with high activity: A natural source for plant proteases. Food Chem 2021; 353:129519. [PMID: 33740507 DOI: 10.1016/j.foodchem.2021.129519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Recently, the interest in the plant proteases has greatly increased. However, only a few of proteases are isolated from the hugely produced oilseeds for the practical utilizations. In this study, the raw sesame milk prepared from peeled sesame seeds was separated into floating, skim, and precipitate fractions by centrifugation. The predominant aspartic endopeptidases and serine carboxypeptidases, which exerted high synergetic activity at pH 4.5-5 and 50-60 °C, were identified in the skim by the liquid chromatography tandem mass spectrometry, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protease inhibitor assay, trichloroacetic acid-nitrogen soluble index (TCA-NSI), and free amino acid analyses. By incubating the mixture (protein content, 2%) of skim and precipitate at pH 4.5 and 50 °C for 6 h, the TCA-NSI and free amino acids achieved to 38.42% and 3148 mg/L, respectively. Moreover, these proteases efficiently degraded the proteins from soybean, peanut, and bovine milk.
Collapse
|