1
|
Phoungsiri A, Lerdpiriyaskulkij N, Mathaweesansurn A, Detsri E. Ultrasonic-driven chemical reduction synthesis of alizarin complexone-modified gold nanoparticles for dual-signal colorimetric and fluorometric sensing of histamine in seafood products. Talanta 2024; 280:126703. [PMID: 39146872 DOI: 10.1016/j.talanta.2024.126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Alizarin complexone-modified gold nanoparticles (Au0-NPsALz) were synthesized using a proposed ultrasonic irradiation-assisted chemical reduction method. Ultrasonic irradiation powers, reaction time and alizarin complexone concentration had been proven to be the main parameters for controlling the nucleation and growth of Au0-NPsALz. In the synthesized ultrasonic irradiation-assisted chemical reduction conditions, Au0-NPsALz had a spherical oriented morphology with a uniform size of 17.84 ± 1.37 nm and are shiny red with a surface plasmon resonance (SPR) of 535 nm. A rapid colorimetric and fluorometric dual-mode detection strategy for selective detection of histamine in seafood was developed based on the self-assembly of Au0-NPsALz-Ni (II) complexes. Ni (II) can capture the histamine molecules close to Au0-NPsALz surfaces, making changes in the colorimetric and fluorometric responses of the solution. The quantitative analysis of histamine was realized through the variation of dual-signal colorimetric and fluorometric responses. Such Au0-NPsALz sensor offered good detection sensitivity for histamine with a detection limit (LOD) of 59.32 μmol L-1 and 116.20 μmol L-1 and wide linear response within the range of 10-10000 μmol L-1 (R2 = 0.9952) and 100-5000 μmol L-1 (R2 = 0.9947) for colorimetric and fluorometric measurement, respectively. Recoveries ranging from 94.99 to 103.29 % and 97.67-106.88 % for colorimetric and fluorometric assay were obtained, showing low levels of matrix effects. Particularly, the results of the dual-mode sensor were also validated by comparing with the HPLC method for improving the assay accuracy and dependability. Ultimately, the developed Au0-NPsALz colorimetric and fluorometric probe performs excellently in practical applications, with promising results for detecting histamine in seafood products.
Collapse
Affiliation(s)
- Ampika Phoungsiri
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Natee Lerdpiriyaskulkij
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Arjnarong Mathaweesansurn
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Ekarat Detsri
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
2
|
Liu S, Wang J, Wang X, Tan L, Liu T, Wang Y, Shi Y, Zhang Z, Ding S, Hou K, Zhang W, Li F, Meng X. Smart chitosan-based nanofibers for real-time monitoring and promotion of wound healing. Int J Biol Macromol 2024; 282:136670. [PMID: 39442852 DOI: 10.1016/j.ijbiomac.2024.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Timely healing of acute wounds and stopping wound chronicity are current and future priorities in wound therapy. It is urgent and relevant to develop a wound dressing that has antimicrobial and monitors the wound microenvironment in real time. In this study, quaternary ammonium chitosan (HTCC) was selected as the antimicrobial agent and CS/PEO/HTCC nanofiber membranes (CPHs) were prepared by electrostatic spinning technique. The nanofiber membrane (CPH91) with the best antimicrobial performance was screened by the disk diffusion method and drug susceptibility testing by dilution method, and its antimicrobial effect on S. aureus was better than that of E. coli. Subsequently, functional carbon dots (CDs) were synthesized by solvothermal method and doped into CPH91 nanofibers by electrospinning. A good linear relationship between pH value (5.0-8.0) and the fluorescence intensity of CDs was observed. In addition, the nanofibers (CPH91@CDs) had good morphology, hydrophilicity, and biocompatibility. Changes in fluorescence intensity of CPH91@CDs at different pH (5.0-8.0) were monitored and converted into RGB values that were linearly fitted to pH value. Finally, the potential of CPH91@CDs of improving wound healing and instantaneously controlling wound healing process was confirmed by an infected wound model (S. aureus) on the back of SD rats.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianing Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lintongqing Tan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tao Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Yudie Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Shi
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Zhuoran Zhang
- General Hospital of Xinjiang Military Command, Xinjiang 830002, China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Kexin Hou
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Wen Zhang
- Shandong Academy of Pharmaceutical Sciences, Shandong Key Laboratory of Mucosal and Skin Drug Delivery Technology, Jinan 250101, China
| | - Fan Li
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China.
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Academy of Pharmaceutical Sciences, Shandong Key Laboratory of Mucosal and Skin Drug Delivery Technology, Jinan 250101, China.
| |
Collapse
|
3
|
Wu G, Ding Z, Dou X, Chen Z, Xie J. Recognition and detection of histamine in foods using aptamer modified fluorescence polymer dots sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124452. [PMID: 38761559 DOI: 10.1016/j.saa.2024.124452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 μmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 μmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ze Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
4
|
Zhang D, Wang S, Zhang Y, Ma Y, Liu H, Sun B. Self-assembled dipeptide confined in covalent organic polymers for fluorescence sensing of tryptamine in fermented meat products. Mikrochim Acta 2024; 191:512. [PMID: 39105857 DOI: 10.1007/s00604-024-06590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Diphenylalanine(FF)-Zn self-assembly (FS) confined in covalent organic polymers (FS@COPs) with efficient fluorescence was synthesized for fluorescence sensing of biogenic amines, which was one of the most important indicators for monitoring food freshness. FS@COPs combined excellent biodegradability of self-assembled dipeptide with chemical stability, porosity and targeted site recognition of COPs. With an optimal excitation wavelength of 360 nm and an optimal emission wavelength of 450 nm, FS@COPs could be used as fluorescence probes to rapidly visualize and highly sensitive determination of tryptamine (Try) within 15 min, and the linear range was from 40 to 900 μg L-1 with a detection limit of 63.08 μg kg-1. Importantly, the FS@COPs showed a high fluorescence quantum yield of 11.28%, and good stability, solubility, and selectivity, which could successfully achieve the rapid, accurate and highly sensitive identification of Try. Furthermore, we revealed the mechanism of FS@COPs for fluorescence sensing of targets. The FS@COPs system was applied to the fluorescence sensing of Try in real samples and showed satisfactory accuracy of 93.02%-105.25%.
Collapse
Affiliation(s)
- Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Yuhua Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
5
|
Du X, Wu G, Dou X, Ding Z, Xie J. Alizarin complexone modified UiO-66-NH 2 as dual-mode colorimetric and fluorescence pH sensor for monitoring perishable food freshness. Food Chem 2024; 445:138700. [PMID: 38359567 DOI: 10.1016/j.foodchem.2024.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Food prone to spoilage has a huge food safety hazard, threatening people's health, so early detection of food spoilage is a continuous and urgent need. Herein, we developed a dual-mode response sensor, alizarin complexone@UiO-66-NH2, which can accurately detect pH. The sensor demonstrated significant changes in color from pale yellow to deep pink, while the fluorescence shifted from light blue to blue violet. Moreover, both UV absorption and fluorescence intensity showed a linear correlation with pH raging from 4.5 to 7.5. These results indicate that the sensor effectively responds to pH, making it suitable for detecting the freshness of perishable food. To put this into practice, we integrated the sensor with cellulose-based filter paper to determine the freshness of shrimp and beef, which was proved to be effective in assessing freshness. In the future, it can be combined with intelligent colorimetric and fluorescence instruments to achieve visual detection.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
6
|
Alqahtani YS, Mahmoud AM, Ali AMBH, El-Wekil MM. Enhanced fluorometric detection of histamine using red emissive amino acid-functionalized bimetallic nanoclusters. RSC Adv 2024; 14:18970-18977. [PMID: 38873548 PMCID: PMC11168285 DOI: 10.1039/d4ra02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Lysine-capped gold nanoclusters doped with silver (LYS@Ag/Au NCs) have been developed for the sensitive and selective "turn-off" fluorescence detection of histamine. This fluorescent probe demonstrates excellent stability and a high quantum yield of 9.45%. Upon addition of histamine, a positively charged biogenic amine, to the LYS@Ag/Au NCs fluorescent probe, its fluorescence emission is quenched due to electrostatic interaction, aggregation, and hydrogen bond formation. The probe exhibits good sensitivity for the determination of histamine within the range of 0.003-350 μM, with a detection limit of 0.001 μM based on a signal-to-noise ratio of 3. Furthermore, the probe has been applied to detect biogenic amines in complicated matrices, highlighting its potential for practical applications. However, interference from the analogue histidine was observed during analysis, which can be mitigated by using a Supelclean™ LC-SAX solid-phase extraction column for removal.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| |
Collapse
|
7
|
Yang Y, Zhou Z, Wang T, Tian D, Ren S, Gao Z. MOF-on-MOF heterostructure boosting AIE sensing and triggered structural collapse for histamine detection. Talanta 2024; 270:125632. [PMID: 38199119 DOI: 10.1016/j.talanta.2024.125632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
We explored a novel preparation method for MOF-on-MOF heterostructured material (Zn-BTEC@ZIF-8). This prepared heterostructured material acts as a container, capable of adsorbing tetracycline hydrochloride molecules into its backbone through hydrogen bonding and π-π interactions. This phenomenon triggers an aggregation induced emission (AIE) effect, leading to the formation of luminescent bodies. The coordination between histamine and MOF was found to collapse the originally stabilized MOF-on-MOF structure. This collapse causes the splitting of the initially stabilized MOF-on-MOF structure from the aggregated state into fragments, resulting in the quenching of fluorescence in the fluorophore. Remarkably, the fluorescence quenching efficiency of this composite surpasses that of single-layer metal-organic framework (MOF) zeolitic imidazolate framework-8 (ZIF-8) or zinc-based MOF of pyromellitic acid (Zn-BTEC), enabling more sensitive detection of histamine. In this investigation, we constructed a label-free fluorescent sensor specifically designed for the detection of histamine, capitalizing on the AIE effect inherent in MOF-on-MOF architecture and the presence of tetracycline hydrochloride (Tet). The sensor demonstrates a rapid, straightforward, and stable response, allowing for histamine detection within 20 min. Notably, the sensor covers a detection range of 2-400 mg L-1, achieving a low detection limit of 1.458 mg L-1 The practical application of this sensor for quantitative detection of histamine in river water and various fish species exhibited robust performance, ensuring reliability and accuracy in real samples. Its potential application in food safety and environmental monitoring is evident, making it a valuable tool for addressing histamine-related challenges in these domains.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
8
|
Wang J, Tang Y, Zheng J, Xie Z, Zhou J, Wu Y. DNAzyme-based and smartphone-assisted colorimetric biosensor for ultrasensitive and highly selective detection of histamine in meats. Food Chem 2024; 435:137526. [PMID: 37742463 DOI: 10.1016/j.foodchem.2023.137526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, a colorimetric biosensor for histamine detection in meat is first established based on the enhancement of DNAzyme with peroxidase-mimic activity. Histamine can boost the generation of G-quadruplex sequences, and make them more easily bond with hemin to produce many DNAzyme molecules. In addition, histamine increases the affinity of DNAzyme to the substrate 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, the obtained DNAzyme can catalyze H2O2 and dissolved oxygen to produce many reactive oxygen species (ROS), which cause the TMB molecule to lose two electrons and generate yellow products, exhibiting a clear absorption peak at 450 nm. The colorimetric biosensor has excellent sensitivity, and the detection limit is as low as 38 μg·L-1 for histamine. Moreover, the biosensor has high selectivity and anti-interference ability, and exhibits a good recovery rate in actual meats. The above results show that the strategy has potential for application in the detection of trace histamine in meats.
Collapse
Affiliation(s)
- Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Xie HH, Han L, Tang SF. Terbium doping and energy level modification of zirconium organic frameworks as probes for the improved determination of histamine and visual inspection of food freshness. Food Chem 2024; 433:137314. [PMID: 37678118 DOI: 10.1016/j.foodchem.2023.137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Food safety is a common concern among people, and the development of high-performance food freshness detection technology is crucial, but is still highly challenging. Fluorescent sensing based on metal organic frameworks is a promising technology to tackle this issue. In this work, three UiO-66 type Zirconium organic frameworks (ZrOFs) which are functionalized with varying numbers of hydroxyl groups to alter the energy levels, and partial replacement of Zirconium(IV) by Terbium(III) ions to introduce additional emitting centers, were explored as probes for the sensing of Histamine (His). With one hydroxyl group introduced, UiO-66-OH@Tb can be developed as ratiometric fluorescent probe with improved sensing performance, showing a wide detection range of 0 to 120 mg/L, and a low detection limit of 0.13 mg/L. UiO-66-OH@Tb can also be fabricated into composite film to function as visual sensing material of His. This work can provide instructions for the development of other fluorescent sensors.
Collapse
Affiliation(s)
- Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.
| |
Collapse
|
10
|
Zhang B, Zhang J, Lang Y, Wang Z, Cai D, Yu X, Lin X. A sea urchin-shaped nanozyme mediated dual-mode immunoassay nanoplatform for sensitive point-of-care testing histamine in food samples. Food Chem 2024; 433:137281. [PMID: 37659293 DOI: 10.1016/j.foodchem.2023.137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Rapid detection of histamine remains a challenge due to the complexity of food matrices. Based on the high peroxidase-like activity of sea urchin-shaped Pt@Au NPs (SU-Pt@Au NPs), a novel dual-mode nanoplatform is developed for the sensitive detection of histamine utilizing an indirect competitive enzyme-linked immunosorbent assay. According to the colorimetric-based UV-vis nanoplatform, histamine is sensitively detected with a liner range from 0.5 to 100 ng/mL and a limit of detection (LOD) as low as 0.3 ng/mL. Then, a smartphone-loaded color picker APP can intelligently detect histamine in point-of-care testing (POCT) based on the R/B ratio of the color channels, with a detection range of 0.5 to 1000 ng/mL and a LOD as low as 0.15 ng/mL, significantly expanding the detection range. Such an easy-to-use and sensitive detection system is employed to quantify histamine in Pacific saury, crab, and pork samples, indicating outstanding application potential in protein-rich meat food safety.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jingyi Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zicheng Wang
- Tianjin Sprite Biological Technology, Tianjin 300021, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China.
| |
Collapse
|
11
|
Zeyadi M, Chaudhari KG, Patil PO, Al-Abbasi FA, Almalki NAR, Alqurashi MM, Kazmi I, Patil S, Khan ZG. Development of a highly sensitive fluorescent probe using Delonix regia (Gulmohar) tree pod shell for precise sarcosine detection in human urine samples: advancing prostate cancer diagnosis. J Biomol Struct Dyn 2024:1-14. [PMID: 38260958 DOI: 10.1080/07391102.2024.2306196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
We designed a highly sensitive fluorescent sensor for the early detection of sarcosine, a potential biomarker for prostate cancer. This sensor was based on surface-cobalt-doped fluorescent carbon quantum dots (Co-CD) using a FRET-based photoluminescent sensing platform. Blue luminescent carbon quantum dots (CQD) were synthesised through a hydrothermal approach, utilizing Delonix regia tree pod shells. Cobalt was employed to functionalize the CQD, enhancing the quantum-entrapped effects and minimizing surface flaws. To optimize Co-CD preparation, we employed a Box-Behnken design (BBD), and response surface methodology (RSM) based on single-factor experiments. The Co-CD was then used as a fluorescent probe for selective Cu2+ detection, with Cu2+ quenching Co-CD fluorescence through an energy transfer process, referred to as 'turn-off'. When sarcosine was introduced, the fluorescence intensity of Co-CD was restored, creating a 'turn-on' response. The sensor exhibited a Cu2+ detection limit (LOD) of 2.4 µM with a linear range of 0 μM to 10 µM. The sarcosine detection in phosphate buffer saline (PBS, pH 7.4) resulted in an LOD of 1.54 μM and a linear range of 0 to 10 µM. Importantly, the sensor demonstrated its suitability for clinical analysis by detecting sarcosine in human urine. In summary, our rapid and highly sensitive sensor offers a novel approach for the detection of sarcosine in real samples, facilitating early prostate cancer diagnosis.
Collapse
Affiliation(s)
- Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Komal G Chaudhari
- Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Maharashtra, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Maharashtra, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May M Alqurashi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaktipal Patil
- Department of Pharmacology, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Maharashtra, India
| | - Zamir G Khan
- Department of Pharmaceutical Chemistry H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Maharashtra, India
| |
Collapse
|
12
|
Iqra, Sughra K, Ali A, Afzal F, Yousaf MJ, Khalid W, Faizul Rasul H, Aziz Z, Aqlan FM, Al-Farga A, Arshad A. Wheat-based gluten and its association with pathogenesis of celiac disease: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:511-525. [DOI: 10.1080/10942912.2023.2169709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Iqra
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat, Pakistan
| | - Kalsoom Sughra
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fareed Afzal
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Jameel Yousaf
- Department of Zoology Faculty of Life Sciences, Government Graduate College Satellite Town, Gujranwala, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Hadiqa Faizul Rasul
- Department of Biotechnology from center of agricultural biochemistry and biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zaira Aziz
- General Medicine, Pakistan Institute of Medical Sciences Islamabad, Pakistan
| | - Faisal Mohammed Aqlan
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Al-Farga
- Department of Food Science, College of Agriculture, Ibb University, Ibb, Yemen
| | - Ammara Arshad
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
13
|
Iordache SM, Iordache AM, Zubarev A, Caramizoiu S, Grigorescu CEA, Marinescu S, Giuglea C. Spectro-Electrochemical Properties of A New Non-Enzymatic Modified Working Electrode Used for Histamine Assessment in the Diagnosis of Food Poisoning. Foods 2023; 12:2908. [PMID: 37569178 PMCID: PMC10417452 DOI: 10.3390/foods12152908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
We successfully prepared a non-enzymatic sensor based on a graphene-thiophene composite for histamine detection. The self-assembling properties of the thiophene onto Au support and the high electrical conductivity of graphene encouraged the choice of this type of composite. The composite was deposited via electrochemical polymerization onto the Au layer of a screen-printed microelectrode. The electropolymerization and electrochemical detection of histamine were both achieved by cyclic voltammetry. Two types of electrolytes were used for the electrochemical detection: (a) phosphate buffer solution (PBS), which showed low-intensity redox peaks for histamine; and (b) trichloroacetic acid (TCA) 0.01 M, which showed improved results over PBS and did not damage the microelectrode. For the concentration range of 100-200 mg/kg, the sensor shows a linear regression pattern for the oxidation peak fitted on the equation Ipa = 123.412 + 0.49933 ×x, with R2 = 0.94178. The lowest limit of detection was calculated to be 13.8 mg/kg and the limit of quantification was calculated at 46 mg/kg. These results are important since by monitoring the amount of histamine in a food product, early onset of spoilage can be easily detected, thus reducing foodborne poisoning and food waste (by recycling products that are still edible).
Collapse
Affiliation(s)
- Stefan-Marian Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, Atomistilor 409, 077125 Magurele, Romania; (S.-M.I.); (C.E.A.G.)
| | - Ana-Maria Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, Atomistilor 409, 077125 Magurele, Romania; (S.-M.I.); (C.E.A.G.)
| | - Alexei Zubarev
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Stefan Caramizoiu
- National Institute for R&D in Microtechnologies IMT-Bucharest, 126A Erou Iancu Nicolae Str., 077190 Voluntari, Romania;
| | - Cristiana Eugenia Ana Grigorescu
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, Atomistilor 409, 077125 Magurele, Romania; (S.-M.I.); (C.E.A.G.)
| | - Silviu Marinescu
- Department of Plastic Surgery, University of Medicine and Pharmacy “Carol Davila”, Eroii Sanitari Bvd., No. 8, Sector 5, 050471 Bucharest, Romania (C.G.)
| | - Carmen Giuglea
- Department of Plastic Surgery, University of Medicine and Pharmacy “Carol Davila”, Eroii Sanitari Bvd., No. 8, Sector 5, 050471 Bucharest, Romania (C.G.)
| |
Collapse
|
14
|
Fabrication of an Ag-based SERS nanotag for histamine quantitative detection. Talanta 2023; 256:124256. [PMID: 36641996 DOI: 10.1016/j.talanta.2023.124256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
A crucial issue in analytical science and physiology is the detection of histamine with high sensitivity, specificity and credibility, which served as an important neurotransmitter in biofluids. Despite the high sensitivity of surface-enhanced Raman spectroscopy (SERS) at the level of single molecule, there are still challenges in providing high sensitivity for histamine with a small cross section. For the selective detection of histamine using SERS, a highly sensitive sandwich structure substrate combining Fe3O4 and an Ag-based SERS nanotag was developed. The Fe3O4@SiO2-COOH served as a capture component for enriching histamine. Upon functionalized Ag nanoparticles with glycine (Gly) and (3-Aminopheyonyl) boronic acid (APBA), they were then used to connect with histamine and serve as a SERS nanotag, respectively. A linear relationship between the Raman intensity and the histamine concentration was observed over the range 10-4-10-8 M with a limit of detection of 7.24 × 10-9 M. This methodology also exhibited good selectivity in the presence of other neurotransmitters. With our new approach, histamine can be detected sensitively and reliably in fish samples, which indicates the potential prospect of an effective method for analyzing histamine in complex specimens.
Collapse
|
15
|
Cho CH, Park CY, Chun HS, Park TJ, Park JP. Antibody-free and selective detection of okadaic acid using an affinity peptide-based indirect assay. Food Chem 2023; 422:136243. [PMID: 37141762 DOI: 10.1016/j.foodchem.2023.136243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Okadaic acid (OA) is a type of marine biotoxin produced by some species of dinoflagellates in marine environments. Consumption of shellfish contaminated with OA can cause diarrhetic shellfish poisoning (DSP) in humans with symptoms that typically include abdominal pain, diarrhea and vomiting. In this study, we developed an affinity peptide-based direct competition enzyme-linked immunosorbent assay (dc-ELISA) for the detection of OA in real samples. The OA-specific peptide was successfully identified via M13 biopanning and a series of peptides were chemically synthesized and characterized their recognition activities. The dc-ELISA system showed good sensitivity and selectivity with a half-maximal inhibitory concentration (IC50) of 148.7 ng/mL and a limit of detection (LOD) of 5.41 ng/mL (equivalent, 21.52 ng/g). Moreover, the effectiveness of the developed dc-ELISA was validated using OA-spiked shellfish samples, and the developed dc-ELISA showed a high recovery rate. These results suggest that the affinity peptide-based dc-ELISA can be a promising tool for detecting OA in shellfish samples.
Collapse
Affiliation(s)
- Chae Hwan Cho
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chan Yeong Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyang Sook Chun
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
16
|
A dual-mode ratiometric fluorescence and smartphone-assisted colorimetric sensing platform based on bifunctional Fe,Co-CQD for glucose analysis at physiological pH. Anal Chim Acta 2023; 1239:340701. [PMID: 36628711 DOI: 10.1016/j.aca.2022.340701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Diabetes is a common and fatal chronic metabolic disease characterized by hyperglycemia, and thus monitoring blood glucose level is essential for early screening and timely control of disease. Herein, we have prepared the bifunctional iron and cobalt co-doped carbon quantum dot (Fe,Co-CQD) with good optical properties and peroxidase-mimetic catalytic activity toward specific substrate o-phenylenediamine (OPD) under alkaline condition. Glucose oxidase (GOx) specifically catalyzes the oxidation of glucose into H2O2, and Fe,Co-CQD subsequently triggers a reaction between H2O2 and OPD to form yellow product DAP with a distinct UV absorption peak at 420 nm. Simultaneously, the generated DAP also appears a well-defined fluorescence signal at 555 nm, which can suppress the intrinsic fluorescence peak of Fe,Co-CQD (439 nm) owing to the inner filter effect (IFE). Based on this principle, a dual-mode ratiometric fluorescence and colorimetric sensing platform has been constructed for glucose analysis at physiological pH, which reveals the advantages of excellent accuracy, high throughput, simple operation, and low cost. More importantly, a smartphone-assisted colorimetric sensing system based on a portable visual detection kit and a 3D printing smartphone-based device has been constructed, which enables on-site detection of glucose in complex serum samples without laboratory instruments, indicating its potential practical application prospect.
Collapse
|
17
|
Gallareta-Olivares G, Rivas-Sanchez A, Cruz-Cruz A, Hussain SM, González-González RB, Cárdenas-Alcaide MF, Iqbal HMN, Parra-Saldívar R. Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. CHEMOSPHERE 2023; 312:137190. [PMID: 36368530 DOI: 10.1016/j.chemosphere.2022.137190] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The contamination of the environment by domestic and industrial discharges is a relevant and persistent problem that needs novel solutions. Innovations in the detection, adsorption, and removal or in-situ degradation of toxic components are urgently required. Various effective techniques and materials have been proposed to address this problem, in which carbon dots (CDs) stand out because of their unique properties and low-cost and abundant nature. Their combination with different metals results in the enhancement of their innate properties. Metal-doped CDs have shown excellent results and competitive advantages in recent times. Considering the above useful critiques and CDs notable potentialities, this review discusses different approaches in detail to sense, adsorb, and photodegrade different pollutants in water samples. It was found that altering the electronic structure of CDs via metal doping has a great potential to enhance the optical, electrical, chemical, and magnetic capabilities of CDs, which in turn is beneficial for wastewater treatment.
Collapse
Affiliation(s)
| | - Andrea Rivas-Sanchez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Angelica Cruz-Cruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - María Fernanda Cárdenas-Alcaide
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Gedda G, Balaji Gupta Tiruveedhi V, Ganesh G, Suribabu J. Recent advancements of carbon dots in analytical techniques. CARBON DOTS IN ANALYTICAL CHEMISTRY 2023:137-147. [DOI: 10.1016/b978-0-323-98350-1.00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Development of an Immunoassay Method for the Sensitive Detection of Histamine and Tryptamine in Foods Based on a CuO@Au Nanoenzyme Label and Molecularly Imprinted Biomimetic Antibody. Polymers (Basel) 2022; 15:polym15010021. [PMID: 36616370 PMCID: PMC9823797 DOI: 10.3390/polym15010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, a novel biomimetic enzyme-linked immunoassay method (BELISA) was successfully established for the detection of histamine and tryptamine, based on catalytically active cupric oxide@gold nanoparticles (CuO@Au NPs) as a marker and a molecularly imprinted polymer (MIP) as the biomimetic antibody. Under optimized conditions, the detection limitations of the BELISA method for histamine and tryptamine were 0.04 mg L-1 and 0.14 mg L-1, respectively. For liquor spiked with histamine and tryptamine, the BELISA method delivered satisfactory recoveries ranging from 89.90% to 115.00%. Furthermore, the levels of histamine and tryptamine in fish, soy sauce, and rice vinegar samples were detected by the BELISA method and a high performance liquid chromatography method, with no significant difference between the two methods being found. Although the catalytic activity of nanozymes is still lower than that of natural enzymes, the BELISA method could still sensitively determine the histamine and tryptamine levels in food samples.
Collapse
|
20
|
A Dual-Mode Method Based on Aptamer Recognition and Time-Resolved Fluorescence Resonance Energy Transfer for Histamine Detection in Fish. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248711. [PMID: 36557845 PMCID: PMC9785670 DOI: 10.3390/molecules27248711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Histamine produced via the secretion of histidine decarboxylase by the bacteria in fish muscles is a toxic biogenic amine and of significant concern in food hygiene, since a high intake can cause poisoning in humans. This study proposed a fluorometric and colorimetric dual-mode specific method for the detection of histamine in fish, based on the fluorescence labeling of a histamine specific aptamer via the quenching and optical properties of gold nanoparticles (AuNPs). Due to the fluorescence resonance energy transfer phenomenon caused by the proximity of AuNPs and NaYF4:Ce/Tb, resulting in the quenching of the fluorescence signal in the detection system, the presence of histamine will compete with AuNPs to capture the aptamer and release it from the AuNP surface, inducing fluorescence recovery. Meanwhile, the combined detection of the two modes showed good linearity with histamine concentration, the linear detection range of the dual-mode synthesis was 0.2-1.0 μmol/L, with a detection limit of 4.57 nmol/L. Thus, this method has good selectivity and was successfully applied to the detection of histamine in fish foodstuffs with the recoveries of 83.39~102.027% and 82.19~105.94% for Trichiurus haumela and Thamnaconus septentrionalis, respectively. In addition, this method was shown to be simple, rapid, and easy to conduct. Through the mutual verification and combined use of the two modes, a highly sensitive, rapid, and accurate dual-mode detection method for the analysis of histamine content in food was established, thereby providing a reference for the monitoring of food freshness.
Collapse
|
21
|
Ratiometric fluorescent nanosystem based on upconversion nanoparticles for histamine determination in seafood. Food Chem 2022; 390:133194. [DOI: 10.1016/j.foodchem.2022.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/18/2022]
|
22
|
Metallic deep eutectic solvents-assisted synthesis of Cu, Cl-doped carbon dots as oxidase-like and peroxidase-like nanozyme for colorimetric assay of hydroquinone and H2O2. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Surface-enhanced Raman spectroscopy tandem with derivatized thin-layer chromatography for ultra-sensitive on-site detection of histamine from fish. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
He J, Mao W, Chen W, Shen W, Duan Q, Shi HW, Tan L, Kuang J, Lee HK, Tang S. Three-Dimensional Printed Microdevice to Enhance Headspace Microextraction for Enrichment of Histamine in Milk. Anal Chem 2022; 94:10595-10600. [PMID: 35857349 DOI: 10.1021/acs.analchem.2c01768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, a three-dimensional (3D) printed microdevice was designed to fix a drop of extractant that was applied to the enrichment of the most toxic biogenic amine, histamine, by headspace single-drop microextraction (HS-SDME). Concomitantly, based on the hybridization chain reaction of the histamine aptamer isothermal nucleic acid amplification strategy, a new fluorescence sensing method was developed to realize the highly sensitive detection of histamine. This is the first application of a 3D-printed microdevice to realize the HS-SDME process, which, among other advantages, effectively solves the problem of unstable and variable drop volumes that can plague traditional SDME and ensures the accuracy and repeatability of the extraction process. The calibration linear range of this SDME-fluorescence method was from 10 pM to 5 μM (R2 > 0.98), and the limit of detection was as low as 3 pM. In addition, the method was successfully demonstrated to determine histamine spiked in milk, with recoveries of between 93% and 104%, and relative standard deviations of less than 5%. The method established in this study has important practical significance for food safety monitoring and human health and provides new ideas and solutions for the design and application of biosensors.
Collapse
Affiliation(s)
- Jing He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.,CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Qiaolian Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, P. R. China.,Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, P. R. China
| | - Jingyu Kuang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| |
Collapse
|
25
|
He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022; 21:3647-3672. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.
Collapse
Affiliation(s)
- Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| |
Collapse
|
26
|
Rapid detection of histamine in fish based on the fluorescence characteristics of carbon nitride. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Li K, Li H, Yin M, Yang D, Xiao F, Kumar Tammina S, Yang Y. Fluorescence-SERS dual-mode for sensing histamine on specific binding histamine-derivative and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121047. [PMID: 35217264 DOI: 10.1016/j.saa.2022.121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Histamine (His) is used as an indicator of seafood quality, but it can be toxic at high intakes. A fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode assay system has been developed for His detection. The His detection method was established based on the specific binding capacity of gold nanoparticles (AuNPs) for the FL derivative of His and o-phthalaldehyde (OPA). In this strategy, His reacted with the OPA to form a Schiff base product (O-His) along with a change in FL and SERS activities. The usual nature of AuNPs could display a significant role both enhancement of SERS and quenching of FL signals. The current investigation displayed a good selectivity toward His over all other biogenic amines. Under the optimized analytical conditions, the SERS and FL intensity of the system were linearly proportional to the His concentration in the range of 0.05-4.5 mg/L and 1-20 mg/L with a detection limit of 0.04 mg/L and 0.32 mg/L, respectively. Moreover, the proposed method was successfully applied for His determination in seafood with promising results.
Collapse
Affiliation(s)
- Kexiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Institute of Agro-products Processing, Yunnan Academy of Agricultural Science, Yunnan Province 650032, China
| | - Mongjia Yin
- Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China.
| | - Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Sai Kumar Tammina
- School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
28
|
Fu HJ, Su R, Luo L, Chen ZJ, Sørensen TJ, Hildebrandt N, Xu ZL. Rapid and Wash-Free Time-Gated FRET Histamine Assays Using Antibodies and Aptamers. ACS Sens 2022; 7:1113-1121. [PMID: 35312279 DOI: 10.1021/acssensors.2c00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Histamine (HA) is an indicator of food freshness and quality. However, high concentrations of HA can cause food poisoning. Simple, rapid, sensitive, and specific quantification can enable efficient screening of HA in food and beverages. However, conventional assays are complicated and time-consuming, as they require multiple incubation, washing, and separation steps. Here, we demonstrate that time-gated Förster resonance energy transfer (TG-FRET) between terbium (Tb) complexes and organic dyes can be implemented in both immunosensors and aptasensors for simple HA quantification using a rapid, single-step, mix-and-measure assay format. Both biosensors could quantify HA at concentrations relevant in food poisoning with limits of detection of 0.19 μg/mL and 0.03 μg/mL, respectively. Excellent specificity was documented against the structurally similar food components tryptamine and l-histidine. Direct applicability of the TG-FRET assays was demonstrated by quantifying HA in spiked fish and wine samples with both excellent concentration recovery and agreement with conventional multistep enzyme-linked immunosorbent assays (ELISAs). Our results show that the simplicity and rapidity of TG-FRET assays do not compromise sensitivity, specificity, and reliability, and both immunosensors and aptasensors have a strong potential for their implementation in advanced food safety screening.
Collapse
Affiliation(s)
- Hui-Jun Fu
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay, France
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Kounnoun A, Louajri A, Cacciola F, Baaboua AE, Mondello L, Bougtaib H, Alahlah N, Stitou M, Maadoudi ME. Development of a new HPLC method for rapid histamine quantification in fish and fishery products without sample clean-up. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Fan S, Ma J, Li C, Wang Y, Zeng W, Li Q, Zhou J, Wang L, Wang Y, Zhang Y. Determination of Tropomyosin in Shrimp and Crab by Liquid Chromatography–Tandem Mass Spectrometry Based on Immunoaffinity Purification. Front Nutr 2022; 9:848294. [PMID: 35308292 PMCID: PMC8927901 DOI: 10.3389/fnut.2022.848294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 01/13/2023] Open
Abstract
A UPLC-MS/MS method was developed for the detection of tropomyosin (TM) in shrimp and crab. After simple extraction, the samples were purified by immunoaffinity column and then digested by trypsin. The obtained sample was separated by Easy-nLC 1000-Q Exactive. The obtained spectrums were analyzed by Thermo Proteome Discoverer 1.4 software and then ANIQLVEK with high sensitivity was selected as the quantitative signature peptide. Isotope-labeled internal standard was used in the quantitative analysis. The method showed good linearity in the range of 5–5,000 μg/L with a limit of quantification (LOQ) of 0.1 mg/kg. The average recoveries were 77.22–95.66% with RSDs ≤ 9.97%, and the matrix effects were between 88.53 and 112.60%. This method could be used for rapid screening and quantitative analysis of TM in shrimp and crab. Thus, it could provide technical support for self-testing of TM by food manufacturers and promote further improvement of allergen labeling in China.
Collapse
Affiliation(s)
- Sufang Fan
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chunsheng Li
- Biology Institute of Hebei Academy of Science, Shijiazhuang, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wen Zeng
- Department of Chemical Engineering, Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Tsinghua University, Beijing, China
| | - Qiang Li
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Jinru Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Liming Wang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Yi Wang
- Department of Chemical Engineering, Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Tsinghua University, Beijing, China
- Yi Wang
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yan Zhang
| |
Collapse
|
31
|
Liu B, Yang K, Lu S, Cai J, Li F, Tian F. Rapid FRET-based homogeneous immunoassay of procalcitonin using matched carbon dots labels. NANOTECHNOLOGY 2021; 33:085702. [PMID: 34788745 DOI: 10.1088/1361-6528/ac3aab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
A novel method for the detection of procalcitonin in a homogeneous system by matched carbon dots (CDs) labeled immunoprobes was proposed based on the principle of FRET and double antibody sandwich method. Blue-emitting carbon dots with a strong fluorescence emission range of 400-550 nm and red-emitting carbon dots with the best excitation range of 410-550 nm were prepared before they reacted with procalcitonin protoclone antibody pairs to form immunoprobes. According to the principles of FRET, blue-emitting carbon dots were selected as the energy donor and red-emitting carbon dots as the energy receptor. The external light source excitation (310 nm) could only cause weak luminescence of CDs. However, once procalcitonin was added, procalcitonin and antibodies would be combined with each other quickly (≤20 min). Here, blue-emitting carbon dots acquired energy could be transferred to red-emitting carbon dots efficiently, causing the emitted fluorescence enhancement of red-emitting carbon dots. The fluorescence detection results in PBS buffer solution and diluted rabbit blood serum showed that the fluorescence intensity variation was linear with the concentration of procalcitonin. There was a good linear relationship betweenF/F0 and procalcitonin concentrations in PBS buffer solution that ranged from 0 to 100 ng ml-1, and the linear equation wasF/F0 = 0.004 *Cpct + 0.98359. Detection in the diluted rabbit serum led to the results that were linear in two concentration ranges, including 0-40 ng ml-1and 40-100 ng ml-1, and the detection limit based on 3σK-1was 0.52 ng ml-1. It is likely that this matched CDs labeled immunoprobes system can provide a new mode for rapid homogeneous detection of disease markers.
Collapse
Affiliation(s)
- Bo Liu
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Kun Yang
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Siyu Lu
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Junjie Cai
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
- Bethune International Peace Hospital, Shijiazhuang 050000, People's Republic of China
| | - Fan Li
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| |
Collapse
|
32
|
Jin J, Li L, Zhang L, Luan Z, Xin S, Song K. Progress in the Application of Carbon Dots-Based Nanozymes. Front Chem 2021; 9:748044. [PMID: 34631669 PMCID: PMC8497709 DOI: 10.3389/fchem.2021.748044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
As functional nanomaterials with simulating enzyme-like properties, nanozymes can not only overcome the inherent limitations of natural enzymes in terms of stability and preparation cost but also possess design, versatility, maneuverability, and applicability of nanomaterials. Therefore, they can be combined with other materials to form composite nanomaterials with superior performance, which has garnered considerable attention. Carbon dots (CDs) are an ideal choice for these composite materials due to their unique physical and chemical properties, such as excellent water dispersion, stable chemical inertness, high photobleaching resistance, and superior surface engineering. With the continuous emergence of various CDs-based nanozymes, it is vital to thoroughly understand their working principle, performance evaluation, and application scope. This review comprehensively discusses the recent advantages and disadvantages of CDs-based nanozymes in biomedicine, catalysis, sensing, detection aspects. It is expected to provide valuable insights into developing novel CDs-based nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
33
|
Influence of Sample Matrix on Determination of Histamine in Fish by Surface Enhanced Raman Spectroscopy Coupled with Chemometric Modelling. Foods 2021; 10:foods10081767. [PMID: 34441544 PMCID: PMC8391157 DOI: 10.3390/foods10081767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
Histamine fish poisoning is a foodborne illness caused by the consumption of fish products with high histamine content. Although intoxication mechanisms and control strategies are well known, it remains by far the most common cause of seafood-related health problems. Since conventional methods for histamine testing are difficult to implement in high-throughput quality control laboratories, simple and rapid methods for histamine testing are needed to ensure the safety of seafood products in global trade. In this work, the previously developed SERS method for the determination of histamine was tested to determine the influence of matrix effect on the performance of the method and to investigate the ability of different chemometric tools to overcome matrix effect issues. Experiments were performed on bluefin tuna (Thunnus thynnus) and bonito (Sarda sarda) samples exposed to varying levels of microbial activity. Spectral analysis confirmed the significant effect of sample matrix, related to different fish species, as well as the extent of microbial activity on the predictive ability of PLSR models with R2 of best model ranging from 0.722–0.945. Models obtained by ANN processing of factors derived by PCA from the raw spectra of the samples showed excellent prediction of histamine, regardless of fish species and extent of microbial activity (R2 of validation > 0.99).
Collapse
|
34
|
Tsiasioti A, Tzanavaras PD. Selective post-column derivatization coupled to cation exchange chromatography for the determination of histamine and its precursor histidine in fish and Oriental sauce samples. Food Chem 2021; 351:129351. [PMID: 33647687 DOI: 10.1016/j.foodchem.2021.129351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/01/2022]
Abstract
Histamine is a biogenic amine that is formed from histidine by action of the enzyme histidine decarboxylase and can be toxic at high intakes. Thus, the quantification of these analytes in foods constitutes a significant axis of food safety. In this study we present the development, validation and application of a new method for the determination of histamine and its precursor histidine in fish products and oriental sauces. The analytes were separated rapidly through a cation exchange column using an acidic mobile phase (7 mmol L-1 nitric acid) and reacted downstream with o-phthalaldehyde in post-column mode in the absence of nucleophilic reagents. The derivatives were detected spectrofluorimetrically at λex/λem. = 360/440 nm. Following investigation of the chromatographic and post-column conditions, the method was validated as for its intended applications. The limits of detection were 0.16 and 0.17 μmol L-1 for histidine and histamine respectively (ca. 0.1 mg kg-1) and the precision was better than 5%. Various food samples were successfully analyzed without matrix interferences following minimal pretreatment. The percent recoveries ranged between 91.3 and 117.9%.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|