1
|
Niu H, Zhou X, Lyu C, Wang D, Zheng J, Cheng J, An R. Evaluating the effects of a pectinolytic probiotic strain as replacement of enzymatical treatments in melon juice pre-alcohol fermentation. Int J Food Microbiol 2025; 435:111171. [PMID: 40139102 DOI: 10.1016/j.ijfoodmicro.2025.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The objective of the current study was to investigate and compare the impact of enzymatic hydrolysis and pre-fermentation with probiotics on the biological activity and metabolic profile of melon juice. We found that fermentation with Lactiplantibacillus plantarum N13, not only decreased the juice pH, total soluble solids and reducing sugar, but also promoted the release of phenolic compounds, increased antioxidant activity and improved juice's aroma profile. Although pectinase and cellulase aided in the release of reducing sugar and total phenols in the juice, the heating process involved in the enzymatic treatment decreased total soluble solids and phenolics in the juice. Altogether, both enzymatic treatment and fermentation with probiotics could aid in the release of bioactive compounds, while fermentation with probiotics demonstrated greater impact on the biological activity and metabolic profile of melon juice. The findings of the current study suggested the use of probiotic cultivars in the pre-alcohol-fermentation process.
Collapse
Affiliation(s)
- Haoyu Niu
- Department of Food, School of Food and Health, Zhejiang Agricultural and Forestry University, Zhejiang 311300, China
| | - Xilong Zhou
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zheng
- Department of Food, School of Food and Health, Zhejiang Agricultural and Forestry University, Zhejiang 311300, China
| | - JiYu Cheng
- Department of Food, School of Food and Health, Zhejiang Agricultural and Forestry University, Zhejiang 311300, China.
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Schwartz M, de Beer D, Marais J. The potential of red-fleshed apples for cider production. Compr Rev Food Sci Food Saf 2025; 24:e70167. [PMID: 40183642 PMCID: PMC11970353 DOI: 10.1111/1541-4337.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Cider quality is influenced by numerous factors relating to the apples used during production. While extensive research has been done to explore the phenolic content, sensory quality, and storage stability of various apple products, the domain of fermented apple products, such as ciders, remains underrepresented. Red-fleshed apples (RFAs) have naturally high concentrations of phenolic compounds, which indicate their potential in the production of novel cider products. However, a knowledge gap remains regarding the application of RFAs in cider production and how their physicochemical and sensory properties are changed during processing. This review is the first to comprehensively investigate whether and to what extent apple categories (dessert, cider, and RFAs) differ regarding their physicochemical and sensory properties from harvest throughout cider processing. Furthermore, it highlights the importance of a holistic understanding of apple characteristics, encompassing both traditional and RFA varieties in the context of cider production. The findings offer valuable insights for stakeholders aiming to enhance product quality, providing a foundation for future studies on optimizing processing methods for a diverse and appealing range of ciders.
Collapse
Affiliation(s)
- Marbi Schwartz
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
- Sensory DepartmentHEINEKEN BeveragesStellenboschSouth Africa
| | - Dalene de Beer
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
| | - Jeannine Marais
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
3
|
Wei Y, Mou J, Zhang H, Gao A, Qin Y. Impact of Co-Inoculation Patterns of Wickerhamomyces anomalus and Saccharomyces cerevisiae on Cider Quality and Aromatic Profiles. Molecules 2025; 30:1620. [PMID: 40286241 PMCID: PMC11990632 DOI: 10.3390/molecules30071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Co-inoculation with Saccharomyces cerevisiae and non-Saccharomyces yeasts is an effective method to improve the flavor of cider. Wickerhamomyces anomalus, known for its high ester production capacity, was evaluated in combination with S. cerevisiae to identify optimal mixed yeast inoculants for improved sensory characteristics. Three W. anomalus strains and three inoculation ratio attributes (1:5, 1:1, and 5:1) were tested to assess their impact on the physicochemical indices and sensory attributes of cider. All the strains used as starters developed fermentation-producing ciders with alcoholic degrees between 6.22 and 6.36 (% v/v). Co-inoculation with W. anomalus resulted in significantly higher ester, volatile acid, and higher alcohol levels compared to those of S. cerevisiae monocultures, increasing the complexity of fruity and floral aromas. Furthermore, the proportion of W. anomalus strains in the inoculations was positively correlated with increased aromatic esters and higher alcohols. The Sc-Wa (1:5) cider showed the highest contents of ethyl ethanoate and 3-methylbutan-1-ol, contributing to a nail polish-like aroma. Sc-Wa (1:1) yielded a higher aromatic diversity than did Sc-Wa (5:1), suggesting that co-inoculation with a ratio of 1:1 may provide an effective fermentation strategy for cider aroma enhancement. These findings offer valuable insights into how non-Saccharomyces yeasts can be effectively applied in cider co-fermentation, providing a foundation for their future use in industrial applications.
Collapse
Affiliation(s)
- Yue Wei
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.W.); (J.M.); (H.Z.)
| | - Jianguo Mou
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.W.); (J.M.); (H.Z.)
| | - Haoran Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.W.); (J.M.); (H.Z.)
| | - Aiying Gao
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian 271000, China;
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.W.); (J.M.); (H.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling 712100, China
- Heyang Viti-Viniculture Station, Northwest A&F University, Heyang 715300, China
| |
Collapse
|
4
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2025; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Chen Y, Zhao R, Jiang G, Liu G, Cao Y, Ye X, Mao Y, He L, Cheng Y, Tian S, Qin Z. Aroma Release and Consumer Perception During Cider Consumption. Foods 2025; 14:1005. [PMID: 40232038 PMCID: PMC11941635 DOI: 10.3390/foods14061005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Flavor is an important property affecting consumer acceptance, yet little is known about the correlation between the sensory attributes, volatile compounds, and consumer preference during cider consumption. This study was the first to evaluate which sensory attributes of commercial apple ciders in China were preferred by Chinese consumers. Meanwhile, GC-MS and GC-IMS were conducted to characterize the aroma release both in orthonasal and retronasal olfactory perceptions. The sensory analyses exhibited that Chinese consumers preferred "sweet cider", and sensory attributes such as "a-tropical fruit", "f-fruity" and "t-sweet" were the most popular. A total of 63 volatile compounds were identified using GC-MS, while both the variety and concentrations of these compounds detected by GC-IMS were lower. Finally, partial least squares (PLS) analysis was used to establish two models based on sensory data, and orthonasal and retronasal volatile compounds. The two models had 32 and 29 compounds with variable importance in projection (VIP) values > 1, respectively. The results revealed that the compounds with high correlation with "t-sweet" and "f-fruity" were roughly the same in two PLS models, whereas the number of compounds contributing positively to "t-sour" and "f-fermented" changed significantly.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruoqing Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoxin Jiang
- Zhejiang-UK Joint Research Laboratory of Food Sensory Science, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guanchen Liu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yanyun Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiao Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuezhong Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li He
- Hangzhou Skyherb Technologies Co., Ltd., Hangzhou 313399, China
| | - Yong Cheng
- Hangzhou Skyherb Technologies Co., Ltd., Hangzhou 313399, China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Zhejiang-UK Joint Research Laboratory of Food Sensory Science, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zihan Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Hu L, Chen X, Cao Y, Gao P, Xu T, Xiong D, Zhao Z. Lactiplantibacillus plantarum exerts strain-specific effects on malolactic fermentation, antioxidant activity, and aroma profile of apple cider. Food Chem X 2024; 23:101575. [PMID: 39022787 PMCID: PMC11252787 DOI: 10.1016/j.fochx.2024.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to investigate the impact of different strains of Lactiplantibacillus plantarum on malolactic fermentation (MLF), antioxidant activity, and aroma of ciders. A commercial strain of Saccharomyces cerevisiae and six indigenous L. plantarum strains were co-inoculated into apple juice to induce simultaneous alcoholic fermentation (AF) and MLF. The findings indicated that despite belonging to the same species, the different L. plantarum strains significantly differed (p < 0.05) in terms of antioxidant activity and aroma compounds in the ciders. MLF induced by L. plantarum resulted in the substantial consumption of malic acid and increased levels of lactic acid in the ciders, with strain-specific effects observed, particularly with L. plantarum SCFF284. In addition, ciders produced from mixed fermentations exhibited higher levels of antioxidant activity than those from pure S. cerevisiae fermentation (p < 0.05), especially for LAM284. Furthermore, ciders produced from mixed fermentations exhibited higher levels of aroma compounds, such as ethyl acetate and isoamyl alcohol, and also received higher sensory scores compared to ciders produced through pure S. cerevisiae fermentation (p < 0.05). These results highlight the effectiveness of MLF induced by L. plantarum in enhancing the antioxidant activity and aroma profile of ciders.
Collapse
Affiliation(s)
- Lujun Hu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Xiaodie Chen
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Yulan Cao
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Teng Xu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Dake Xiong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Zhifeng Zhao
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| |
Collapse
|
7
|
Luo X, Li Y, Zhong K, Luo D, Wu Y, Gao H. Discovering the effect of co-fermentation involving Saccharomyces cerevisiae and Schizosaccharomyces pombe on the sensory quality improvement of mandarin wine based on metabolites and transcriptomic profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7932-7940. [PMID: 37499161 DOI: 10.1002/jsfa.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Mandarin wine has high added value, which can extend the industry chain of mandarins with excellent economic results. However, innovative fermentation methods are urgently needed to improve the typical taste and flavor characteristics of mandarin wine. In this study, the effect and underlying mechanism of co-fermentation with Saccharomyces cerevisiae and Schizosaccharomyces pombe on the characteristics of mandarin wine were investigated based on integrated metabolomic and transcriptomic analyses. RESULTS In comparison with fermentation with only S. cerevisiae, the mandarin wine produced from co-fermentation with S. cerevisiae and Sc. pombe had a higher pH value, lower malic acid content, and more abundant free amino acids, resulting in better sensory evaluation scores. The introduction of Sc. pombe extended the stage of alcoholic fermentation and enhanced the richness and diversity of volatile compounds, especially floral and fruity aroma compounds, including ethyl hexanoate, ethyl caprylate, ethyl enanthate, 1-heptanol, and phenylethyl alcohol. he significantly differential metabolites and varying genes were mainly found in pathways of glycolysis, pyruvate metabolism, the citrate cycle, and amino acid metabolism. CONCLUSION Co-fermentation with S. cerevisiae and Sc. pombe showed advantages in producing distinctive taste and flavor of mandarin wine in comparison with fermentation with only S. cerevisiae. This study can inspire new co-fermentation strategies to improve the sensory quality of mandarin wine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yumeng Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Dong Luo
- Sichuan MingFuBang Agricultural Science and Technology Co., LTD, Meishan, China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
9
|
McCabe AK, Keyes JK, Hemetsberger H, Kurr CV, Albright B, Ward MG, McKinley ML, Breezley SJ, Cole CA. Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops. Molecules 2023; 28:5802. [PMID: 37570773 PMCID: PMC10421000 DOI: 10.3390/molecules28155802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Hops are among the most costly and environmentally impactful raw materials used in brewing, yet they play a crucial role in the aroma of beer. However, predicting beer aroma based on hop variety or hopping method remains arduous. This is partly because hop oils are unique for each hop variety, and they may be biotransformed by yeast enzymes during fermentation. Even slight molecular structure modifications can dramatically affect the organoleptic properties of beer. Through combined chemical and sensory analysis of dry-hopped beers prepared with different hop varieties (Azacca, Idaho-7, and Sultana), this work aimed to profile the aromas and the overall biotransformation processes taking place during fermentation. A total of 51 volatile organic compounds (VOCs) were semi-quantified and monitored: 19 esters, 13 sesquiterpenes, 7 ketones, 7 alcohols, 4 monoterpenes, and 1 volatile acid. There were significant similarities in the measured analytes and perceived aromas of these beers, but one hop variety (Sultana) delivered an increased quantity of unique aromas and an increased concentration of volatiles in the headspace for the same quantity of hop pellets added. This work provides practical information to brewers who utilize hops in beer production.
Collapse
Affiliation(s)
- Anna K. McCabe
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Jasmine K. Keyes
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Heidi Hemetsberger
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Chris V. Kurr
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Bryan Albright
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Michael G. Ward
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Megan L. McKinley
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Steven J. Breezley
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Callie A. Cole
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| |
Collapse
|
10
|
He W, Tian Y, Liu S, Vaateri L, Ma X, Haikonen T, Yang B, Laaksonen O. Comparison of phenolic composition and sensory quality among pear beverages made using Saccharomyces cerevisiae and Torulaspora delbrueckii. Food Chem 2023; 422:136184. [PMID: 37148850 DOI: 10.1016/j.foodchem.2023.136184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/08/2023]
Abstract
The effects of Saccharomyces cerevisiae and Torulaspora delbrueckii on phenolic composition and sensory quality were characterized in the production of alcoholic beverages from selected pear cultivars with diverse biochemical characteristics. The fermentation process generally affected the phenolic composition by increasing the contents of hydroxycinnamic acids and flavan-3-ols and reducing the levels of hydroxybenzoic acids, procyanidins, and flavonols. Although the phenolic compositions and sensory properties of pear beverages depended primarily on pear cultivar selection, the applied yeast strains also played important roles in beverage quality. Fermentation with T. delbrueckii resulted in higher caffeoylquinic acid and quercetin-3-O-glucoside contents, higher rated intensities of 'cooked pear' and 'floral' odors and a sweeter taste than fermentation with S. cerevisiae. Moreover, higher concentrations of hydroxybenzoic acids, hydroxycinnamic acids, and flavonols correlated closely with astringency perception. Applying T. delbrueckii strains and breeding novel pear cultivars are important approaches to produce fermented beverages of high quality.
Collapse
Affiliation(s)
- Wenjia He
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Shuxun Liu
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Laura Vaateri
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Xueying Ma
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China
| | - Tuuli Haikonen
- Natural Resources Institute Finland (Luke), Production Systems/Horticulture Technologies, Toivonlinnantie 518, FI-21500 Piikkiö, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
11
|
Quality Improvement in Apple Ciders during Simultaneous Co-Fermentation through Triple Mixed-Cultures of Saccharomyces cerevisiae, Pichia kudriavzevii, and Lactiplantibacillus plantarum. Foods 2023; 12:foods12030655. [PMID: 36766182 PMCID: PMC9914050 DOI: 10.3390/foods12030655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study explored the effect of the combination of Saccharomyces yeast, non-Saccharomyces yeast (Pichia kudriavzevii), and Lactiplantibacillus plantarum during cider fermentation on physicochemical properties, antioxidant activities, flavor and aroma compounds, as well as sensory qualities. Ciders fermented with the triple mixed-cultures of these three species showed lower acid and alcohol content than those fermented with the single-culture of S. cerevisiae. The antioxidant activities were enhanced by the triple mixed-culture fermentation, giving a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and total antioxidant capacity; specifically, the SPL5 cider showed the highest DPPH radical scavenging rate (77.28%), while the SPL2 gave the highest total antioxidant capacity (39.57 mmol/L). Additionally, the triple mixed-culture fermentation resulted in improved flavor and aroma with a lower acidity (L-malic acid) and higher aroma compounds (Esters), when compared with the single-culture fermented ciders (Saccharomyces cerevisiae); more specifically, the SPL4 cider resulted in the highest total flavor and aroma compounds. In addition, sensory evaluation demonstrated that ciders produced using the triple mixed-cultures gained higher scores than those fermented using the single-culture of S. cerevisiae, giving better floral aroma, fruity flavor, and overall acceptability. Therefore, our results indicated that the triple mixed-cultures (S. cerevisiae, P. kudriavzevii, and L. plantarum) were found to make up some enological shortages of the single S. cerevisiae fermented cider. This study is believed to provide a potential strategy to enhance cider quality and further give a reference for new industrial development protocols for cider fermentation that have better sensory qualities with higher antioxidant properties.
Collapse
|
12
|
Chen ES. Application of the fission yeast Schizosaccharomyces pombe in human nutrition. FEMS Yeast Res 2023; 23:6961766. [PMID: 36574952 DOI: 10.1093/femsyr/foac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Fission yeast Schizosaccharomyces pombe (S. pombe) is renowned as a powerful genetic model for deciphering cellular and molecular biological phenomena, including cell division, chromosomal events, stress responses, and human carcinogenesis. Traditionally, Africans use S. pombe to ferment the beer called 'Pombe', which continues to be consumed in many parts of Africa. Although not as widely utilized as the baker's yeast Saccharomyces cerevisiae, S. pombe has secured several niches in the food industry for human nutrition because of its unique metabolism. This review will explore three specific facets of human nutrition where S. pombe has made a significant impact: namely, in wine fermentation, animal husbandry and neutraceutical supplementation coenzyme Q10 production. Discussions focus on the current gaps in these areas, and the potential research advances useful for addressing future challenges. Overall, gaining a better understanding of S. pombe metabolism will strengthen production in these areas and potentially spearhead novel future applications.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,National University Health System (NUHS), Singapore 119228, Singapore.,NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
13
|
Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Schizosaccharomyces pombe in the Brewing Process: Mixed-Culture Fermentation for More Complete Attenuation of High-Gravity Wort. FERMENTATION 2022. [DOI: 10.3390/fermentation8110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-gravity brewing is a method that maximises brewhouse capacity and reduces energy consumption per unit of beer produced. The fermentation of wort with high sugar content is known to impact the fermentation characteristics and production of aroma-active volatiles, and as such, cultures that are adapted to this method are industrially valuable. Mixed-culture fermentation offers brewers the opportunity to combine desirable features from multiple strains of yeast and to take advantage of the interactions between those strains. In this study, a highly attenuative strain of Schizosaccharomyces pombe is paired with a fast-fermenting brewing strain of Saccharomyces cerevisiae in the fermentation of wort at both standard and high gravity at centilitre scale. Mixed cultures were found to produce several esters and higher alcohols in higher concentration than in either of the parent monocultures at both standard and high gravity. The mixed culture also represented a compromise between fermentation length (modelled by the logistic equation), which was extended by the inclusion of S. pombe, and ethanol yield, which was increased. The application of mixed-culture strategies to high-gravity brewing practices may allow brewers greater flexibility in achieving desired flavour profiles whilst increasing brewhouse efficiency.
Collapse
|
15
|
Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022; 27:molecules27206937. [PMID: 36296530 PMCID: PMC9610383 DOI: 10.3390/molecules27206937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The apple has been recognised as the most culturally important fruit crop in temperate land areas. Centuries of human exploitation and development led to the production of thousands of apple cultivars. Nowadays, the apple represents the third most widely cultivated fruit in the world. About 30% of the total production of apples is processed, being juice and cider the main resulting products. Regarding this procedure, a large quantity of apple by-product is generated, which tends to be undervalued, and commonly remains underutilised, landfilled, or incinerated. However, apple by-product is a proven source of bioactive compounds, namely dietary fibre, fatty acids, triterpenes, or polyphenols. Therefore, the application of green technologies should be considered in order to improve the functionality of apple by-product while promoting its use as the raw material of a novel product line. The present work provides a holistic view of the apple’s historical evolution, characterises apple by-product, and reviews the application of green technologies for improving its functionality. These sustainable procedures can enable the transformation of this perishable material into a novel ingredient opening up new prospects for the apple’s potential use and consumption.
Collapse
|
16
|
Wang N, Zhu Y, Zhu R, Xiao Y, Qiu J, Wu Y, Zhong K, Gao H. Revealing the co-fermentation of Saccharomyces cerevisiae and Schizosaccharomyces pombe on the quality of cider based on the metabolomic and transcriptomic analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During the fermentation of apple juice, yeast metabolism creates complex biosynthetic pathways which produce a range of compounds responsible for the organoleptic qualities of cider. In this study, basic cider quality parameters were measured to investigate the influence of six yeast strains on cider made from three apple varieties (‘Pink Lady’, ‘Sturmer’, and ‘Bulmer’s Norman’). Measurement of pH, titratable acidity, and total phenolic content revealed that yeast can influence cider attributes, albeit variety and season dependent. Descriptive sensory analysis using a trained sensory panel was conducted on cider made from ‘Pink Lady’ apples and the same six yeast strains. The sensory panel significantly differentiated the yeast strains on the attributes of ‘fresh apple’, ‘earthy’ and ‘pear’. Identifying the variety specific influence of individual yeast strains on chemical and sensory characteristics of apple cider will provide cider makers with an enhanced understanding when choosing yeast strains.
Collapse
|
18
|
Effect of Deacidification Treatment on the Flavor Quality of Zaosu Pear–Kiwifruit Wine. Foods 2022; 11:foods11142007. [PMID: 35885250 PMCID: PMC9324503 DOI: 10.3390/foods11142007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Conventional pear–kiwifruit wine has a bland flavor and sour taste, because of excessive l-malic acid content and, consequently, little consumer appeal. An Oenococcus oeni strain, GF-2, has good malolactic fermentation (MLF) performance and high glucosidase activity. Through a Box–Behnken design, the optimum MLF parameters for deacidification by GF-2 were determined: initial pH of 3.4, 5% v/v inoculation, and temperature of 20 °C, which reduced the malic acid content by 98.3%. The changes in the content of organic acids, polyphenols, and aromatic compounds after MLF were compared with chemical deacidification. MLF significantly decreased the total concentration of organic acids by 29.7% and promoted the accumulation of aromatic esters, higher alcohols, and terpenoids, but chemical deacidification markedly decreased aromatic compound content by 59.8%. MLF wine achieved the highest sensory scores for aroma, taste, and overall acceptability. Therefore, MLF with O. oeni GF-2 has great potential to markedly improve the quality of commercial pear–kiwifruit wine.
Collapse
|
19
|
Multi-objective evaluation of freshly distilled brandy: Characterisation and distribution patterns of key odour-active compounds. Food Chem X 2022; 14:100276. [PMID: 35284819 PMCID: PMC8907661 DOI: 10.1016/j.fochx.2022.100276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
The characterisation and distribution patterns of key odour-active compounds in head, heart1, heart2, tail, and stillage cuts of freshly distilled brandy were investigated by gas chromatography–olfactometry-mass spectrometry coupled with aroma extract dilution analysis (AEDA) and chemometrics analysis. Results from AEDA showed that there were 50, 61, 48, 25, and 18 odour-active compounds in the head, heart1, heart2, tail, and stillage cuts, respectively. Besides, 19, 22, 11, 5, and 4 quantified compounds with odour activity values ≥ 1, respectively, were considered to be potential contributors to the aroma profile of different distillation cuts. Especially, the chemometrics analysis illustrated the heart1 fraction was characterized by 3-methylbutanol, ethyl hexanoate, 1-hexanol, ethyl octanoate, benzaldehyde, ethyl decanoate, and 2-phenylethyl acetate; (E)-hex-3-en-1-ol, (Z)-hex-3-en-1-ol, and 2-phenylethyl acetate greatly contributed to the characteristics of the heart2 cut. Furthermore, different volatile compounds with a variety of boiling points and solubilities followed diverse distillation rules during the second distillation. Our findings may provide a rational basis for concentrating more pleasant aroma components contributing to brandy.
Collapse
Key Words
- AD, aroma descriptor
- AEDA, aroma extract dilution analysis
- Distillation cut
- FD, flavor dilution
- Freshly distilled brandy
- GC-O-MS, gas chromatography-olfactometry-mass spectrometry
- HS-SPME, headspace solid-phase microextraction
- MS, mass spectra
- OAV, odour activity value
- Odour-active compounds
- PCA, principal component analysis
- PLS-DA, partial least squares discriminant analysis
- Partial least squares discriminant analysis
- Principal component analysis
- RI, retention indices
- SAFE, solvent-assisted flavour evaporation
- Std, standards
- VIP, variable importance in projection
Collapse
|
20
|
Yu W, Zhu Y, Zhu R, Bai J, Qiu J, Wu Y, Zhong K, Gao H. Insight into the characteristics of cider fermented by single and co-culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe based on metabolomic and transcriptomic approaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
He W, Laaksonen O, Tian Y, Haikonen T, Yang B. Chemical Composition of Juices Made from Cultivars and Breeding Selections of European Pear ( Pyrus communis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5137-5150. [PMID: 35426665 PMCID: PMC9052750 DOI: 10.1021/acs.jafc.2c00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
The phenolic profiles and other major metabolites in juices made from fruits of 17 cultivars and selections of European pears were investigated using UHPLC-DAD-ESI-QTOF-MS and GC-FID, respectively. A total of 39 phenolic compounds were detected, including hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, procyanidins, flavonols, and arbutin. Among these compounds, 5-O-caffeoylquinic acid was the most predominant, accounting for 14-39% of total quantified phenolic contents (TPA) determined in this study. The variations were mainly cultivar dependent. The genetic background effect on the chemical compositions is complex, and breeding selections from the same parental cultivars varied dramatically in chemical compositions. Putative perry pears contained more 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, caffeoyl N-trytophan, caffeoylshikimic acid, coumaroylquinic acid isomer, syringic acid hexoside, procyanidin dimer B2, (+)-catechin, and malic acid, whereas putative dessert pears had higher esters, alcohols, and aldehydes. The results will be helpful in providing industry with phytochemical compositional information, assisting pear selections in commercial utilization.
Collapse
Affiliation(s)
- Wenjia He
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Ye Tian
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuuli Haikonen
- Production
systems/Horticulture Technologies, Natural
Resources Institute Finland (Luke), Toivonlinnantie 518, Piikkiö FI-21500, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
22
|
He W, Laaksonen O, Tian Y, Heinonen M, Bitz L, Yang B. Phenolic compound profiles in Finnish apple (Malus × domestica Borkh.) juices and ciders fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe strains. Food Chem 2022; 373:131437. [PMID: 34749087 DOI: 10.1016/j.foodchem.2021.131437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/26/2022]
Abstract
The phenolic compounds in juices and ciders made with Saccharomyces cerevisiae or Schizosaccharomyces pombe from eleven Finnish apple cultivars were analyzed using liquid chromatographic and mass spectrometric methods combined with multivariate data analysis. In general, the ciders contained less phenolic compounds than corresponding apple juices. In the studied apple juices and ciders, hydroxycinnamic acids were the most predominant, accounting for around 80% of total phenolic compounds. Apple juices contained more flavonol glycosides and dihydrochalcones whereas cider processing resulted in increased amount of free hydroxycinnamic acids. The contents of individual phenolic compounds were more dependent on the apple cultivars than the yeast species. Certain cultivars contained remarkably higher contents of dihydrochalcones and hydroxycinnamic acids when comparing with other cultivars. Ciders made using S. pombe remained higher contents of procyanidins and (+)-catechin while S. cerevisiae ciders contained higher individual hydroxycinnamic acids, such as 5-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and 4-O-p-coumaroylquinic acid.
Collapse
Affiliation(s)
- Wenjia He
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Maarit Heinonen
- Natural Resources Institute Finland (Luke), Production systems/Horticultural technologies, Myllytie 1, FI-31600 Jokioinen, Finland
| | - Lidija Bitz
- Natural Resources Institute Finland (Luke), Production systems/Horticultural technologies, Myllytie 1, FI-31600 Jokioinen, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China.
| |
Collapse
|
23
|
Liu C, Li M, Ren T, Wang J, Niu C, Zheng F, Li Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Han Y, Wang Y, Li J, Du J, Su Z. Evaluating the effect of bentonite, malic acid on pectin methyl esterase, methanol in fermented apple juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Hinkley JL, Bingman MT, Lee JS, Bradley CP, Cole CA. Volatile Profile Survey of Five Apple Varieties Grown in Southwest Colorado from Juice to Finished, Dry-Hopped Cider. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2013645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew T. Bingman
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR, U.S.A.
| | - Joslynn S. Lee
- Department of Chemistry & Biochemistry, Fort Lewis College, Durango, CO, U.S.A.
| | - Colin P. Bradley
- Department of Chemistry, Columbia Basin College, Pasco, WA, U.S.A
| | - Callie A. Cole
- Department of Chemistry & Biochemistry, Fort Lewis College, Durango, CO, U.S.A.
| |
Collapse
|
26
|
Aroma Profiles of Dry-Hopped Ciders Produced with Citra, Galaxy, and Mosaic Hops. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cider quality and consumer acceptance are greatly influenced by its aroma. With the continued expansion of the craft cider industry, cider producers are employing techniques such as dry hopping to develop unique flavor profiles. Few studies, however, have explored the VOCs of dry-hopped cider. Herein, we monitor the development of VOCs from pressed apple juice, through fermentation and dry hopping by HS–SPME–GC–MS, to elucidate when and how aroma compounds arise in cider production. In all, 89 VOCs were detected, spanning eight classes of organic compounds. Racking events decreased ester concentrations by 10 ± 1%, but resting on the lees allowed these pleasant, fruity aromas to be reestablished. Dry hopping was conducted with three types of hops (Citra, Galaxy, and Mosaic). The varied development of terpenes and esters between hop varieties supports the use of this technique to diversify the aroma profiles of ciders. Herein, we report that both the variety of hops and the timing of key processing steps including racking and hop addition significantly alter the identity and concentration of aroma-important VOCs in dry-hopped cider.
Collapse
|
27
|
Authentication Using Volatile Composition: A Proof-of-Concept Study on the Volatile Profiles of Fourteen Queensland Ciders. BEVERAGES 2021. [DOI: 10.3390/beverages7020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although relatively small, the Australian cider industry has experienced significant growth in recent years. One of the current challenges in the industry is the lack of research specific to Australian ciders. Establishing baseline volatile organic compound (VOC) profiles of Australian cider is paramount to developing a better understanding of the industry. This understanding may ultimately be utilized for both the categorization and authentication of existing ciders, and the targeted modification of cider volatiles for the development and improvement of cider quality. This study utilized gas chromatography, coupled with mass spectrometry, to identify key VOCs present in 14 ciders sourced from four different manufacturers in Queensland, Australia. A total of 40 VOCs were identified across the ciders, with significant variation depending on the flavor and manufacturer. Principal component analysis indicated that the ciders were well-separated based on the manufacturer, supporting the prospect of using the volatile composition to discriminate between cider manufacturers. Furthermore, hierarchical cluster analysis highlighted the commonalities and differences in cider composition between different manufacturers, which may be indicative of the varying ingredients and manufacturing processes used to create the ciders. Future studies profiling the volatile composition of larger numbers of Australian ciders are recommended to support the use of this analytical technique for authentication purposes. Likewise, exploration of the relationship between specific processes and VOCs is recommended to fortify an understanding of how to optimize cider production to improve consumer satisfaction.
Collapse
|
28
|
Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sensory profiles of these products are also presented. Additionally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple spirits are illustrated. New trends of fermented apple-based products applicability in tangential industries are summarized.
Collapse
|