1
|
Chen Q, Yu B, Zhu Y, Xiong H, Guo Y, Liu D, Sun B. Effects of different concentrations of Lactiplantibacillus plantarum and Bacillus licheniformis on silage fermentation parameter, chemical composition and microbial community of Pennisetum sinese. Front Microbiol 2025; 16:1532060. [PMID: 40231240 PMCID: PMC11994720 DOI: 10.3389/fmicb.2025.1532060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
The purpose of the experiment was to study the effects of different concentrations of Lactiplantibacillus plantarum (LP) and Bacillus licheniformis (BL) on the quality of Pennisetum sinese (PS) silage. The experiment consisted of seven treatment groups. The control group did not use additives, and the experimental groups were added with LP or BL of 1 × 105 CFU/g fresh weight (FW), 1 × 106 CFU/g FW and 1 × 107 CFU/g FW, respectively. The nutritional value of Pennisetum sinese silage was comprehensively evaluated using CNCPS 6.5 system and 16sDNA sequencing technology. The results showed that the ammonia nitrogen content and pH of each experimental group were significantly lower than those of the control group (p < 0.05). The starch content gradually decreased and the water-soluble carbohydrate (WSC) content increased in both LP and BL groups with the increase of addition concentration. The LP7 group could significantly increase the true protein content in protein (p < 0.05), and CP in BL groups decreased gradually with the increase of concentration. Compared with the control group, the content of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was significantly lower in LP7 group (p < 0.05) and the ADF content was significantly lower in BL5 group (p < 0.05). In addition, LP and BL were able to change the proportion of each component in CNCPS system for Pennisetum sinese silage. The use of LP and BL can reduce the relative abundance of harmful microorganisms in silage such as Sediminibacterium and Nitrospira, and significantly change the microbial community structure in silage (p < 0.05). In conclusion, LP and BL have significant effects on silage quality and nutritional value. The nutritional value of Pennisetum sinese in LP groups showed a dose-dependent effect, and adding 1 × 107 CFU/g LP have the best effect in silage. The best effect was achieved by adding 1 × 105 CFU/g BL in BL groups, and the effect of LP7 group was better than that of BL5 group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Li T, Huang J, Yu J, Tian X, Zhang C, Pu H. Effects of soaking glutinous sorghum grains on physicochemical properties of starch. Int J Biol Macromol 2024; 267:131522. [PMID: 38614175 DOI: 10.1016/j.ijbiomac.2024.131522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Glutinous sorghum grains were soaked (60-80 °C, 2-8 h) to explore the effects of soaking, an essential step in industrial processing of brewing, on starch. As the soaking temperature increased, the peak viscosity and crystallinity of starch gradually decreased, while the enzymatic hydrolysis rate and storage modulus first increased and then decreased. At 70 °C, the content of amylose, the enzymatic hydrolysis rate of starch, and the final viscosity first increase and then decrease with the increase of soaking time, reaching their maximum at 6 h, increased by 53.1 %, 11.0 %, and 10.4 %, respectively, as compared with the non-soaked sample. At 80 °C (4 h), the laser confocal microscopy images showed a network structure formed between the denatured protein chains and the leached-out amylose chains. The molecular weights of starch before and after soaking were all in the range of 3.82-8.98 × 107 g/mol. Since 70 °C is lower than that of starch gelatinization and protein denaturation, when soaking for 6 h, the enzymatic hydrolysis rate of starch is the highest, and the growth of miscellaneous bacteria is inhibited, which is beneficial for subsequent processing technology. The result provides a theoretical basis for the intelligent control of glutinous sorghum brewing.
Collapse
Affiliation(s)
- Tao Li
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Junrong Huang
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Jing Yu
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiaodong Tian
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chong Zhang
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Huayin Pu
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
3
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Changes in water absorption and morphology of rice with different eating quality during soaking. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Luo S, Zhou B, Cheng L, Huang J, Zou P, Zeng Y, Huang S, Chen T, Liu C, Wu J. Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice. Food Chem 2022; 386:132757. [PMID: 35367802 DOI: 10.1016/j.foodchem.2022.132757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 11/04/2022]
Abstract
Extruded instant rice (EIR) could not maintain an intact grain morphology during cooking, which seriously affected its cooking quality. The problem was solved by pre-fermentation of rice flour for 5-10 days. Consequently, the cooking loss was significantly reduced, while the hardness, stickiness and water absorption of EIR were significantly increased. The mechanism was that the gel network of EIR was strengthened by the following ways: (1) pre-fermentation significantly increased the total starch and amylose contents of rice flour due to the dissolution or leaching of lipids, ash and soluble proteins into the fermentation broth; (2) pre-fermentation degraded the amorphous region of starch granules by enzymes and organic acids, resulting in a molecular structure with lower polydispersity index and molecular weight, and higher proportion of long- and ultra-long branched chains of amylopectin. This kind of molecular structure was conducive to the formation of ordered double helix structures and strong gel network.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Bingbing Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Lanlan Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jingyi Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Pei Zou
- Jiangxi Biological Vocational College, No. 608 Nanlian Road, Nanchang 330200, China
| | - Yingying Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shijin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
6
|
Nacimento KM, Balbinoti TCV, Jorge LMDM, Jorge RMM. Microstructure of rice (
Oryza sativa
L.) and kinetics in hydrothermal process. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Kauyse Matos Nacimento
- Chemical Engineering Department, Graduate Program in Food Engineering, Federal University of Paraná Laboratory of Process Engineering in Particulate Systems Curitiba Brazil
| | | | - Luiz Mario de Matos Jorge
- Chemical Engineering Department, Graduate Program in Food Engineering, Federal University of Paraná Laboratory of Process Engineering in Particulate Systems Curitiba Brazil
- Chemical Engineering Department, Graduate Program in Chemical Engineering State University of Maringá Maringá Brazil
| | - Regina Maria Matos Jorge
- Chemical Engineering Department, Graduate Program in Food Engineering, Federal University of Paraná Laboratory of Process Engineering in Particulate Systems Curitiba Brazil
| |
Collapse
|
7
|
Wang Y, Zheng Y, Zhou R, Ma M. Kinetic studies on soluble sugar profile in rice during storage: Derivation using the Laplace transform. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Effects of Processing on Starch Structure, Textural, and Digestive Property of "Horisenbada", a Traditional Mongolian Food. Foods 2022; 11:foods11020212. [PMID: 35053944 PMCID: PMC8774302 DOI: 10.3390/foods11020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Horisenbada, prepared by the soaking, steaming, and baking of millets, is a traditional Mongolian food and is characterized by its long shelf life, convenience, and nutrition. In this study, the effect of processing on the starch structure, textural, and digestive property of millets was investigated. Compared to the soaking treatment, steaming and baking significantly reduced the molecular size and crystallinity of the millet starch, while baking increased the proportion of long amylose chains, partially destroyed starch granules, and formed a closely packed granular structure. Soaking and steaming significantly reduced the hardness of the millets, while the hardness of baked millets is comparable to that of raw millet grains. By fitting digestive curves with a first-order model and logarithm of the slope (LOS) plot, it showed that the baking treatment significantly reduced the digestibility of millets, the steaming treatment increased the digestibility of millets, while the soaked millets displayed a similar digestive property with raw millets, in terms of both digestion rate and digestion degree. This study could improve the understanding of the effects of processing on the palatability and health benefits of Horisenbada.
Collapse
|
9
|
Effects of Malic Acid and Sucrose on the Fermentation Parameters, CNCPS Nitrogen Fractions, and Bacterial Community of Moringa oleifera Leaves Silage. Microorganisms 2021; 9:microorganisms9102102. [PMID: 34683423 PMCID: PMC8538485 DOI: 10.3390/microorganisms9102102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the effects of malic acid, sucrose, and their mixture on the fermentation parameters, Cornell Net Carbohydrate and Protein System (CNCPS) nitrogen fractions, and bacterial community of Moringa oleifera leaves (MOL) silages. The trial was divided into four treatments and labeled as CON (control group) and MLA, SUC, and MIX (respectively denoting the addition of 1% malic acid, 1% sucrose, and 1% malic acid + 1% sucrose to the fresh weight basis). The silage packages were opened on the 2nd, 5th, 10th, 20th, and 40th days of ensiling for subsequent determination. Malic acid and sucrose increased the lactic acid content (p < 0.05) and pH value, and the acetic acid contents of MLA and MIX were lower than those in CON (p < 0.05). Compared with sucrose, malic acid had a better capacity to preserve nutrients and inhibit proteolysis, and thus exerted better effects on the CNCPS nitrogen fractions. The results of 16S rRNA showed that the dominant phyla were Firmicutes and Proteobacteria and that the dominant genera were Lactobacillus and Weissella. With the application of silage additives and the processing of fermentation, there was a remarkable change in the composition and function of the bacterial community. The variation of the fermentation parameters and CNCPS nitrogen fractions in the MOL silages caused by malic acid and sucrose might be attributed to the dynamic and dramatic changes of the bacterial community.
Collapse
|
10
|
Gruintal-Santos MÁ, Zagaceta-Álvarez MT, Aguilar Cruz KA, Reséndiz-Muñoz J, Martinez-Flores HE, Fernández-Muñoz JL. Mathematical Model for Describing Corn Grain Dehydration Kinetics after a Nixtamalization Process. Foods 2021; 10:foods10081771. [PMID: 34441548 PMCID: PMC8394429 DOI: 10.3390/foods10081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this research, the mathematical model associated with the hydrothermal dehydration process of Nixtamalized Corn Grains (NCG) with different Steeping Time (ST) values, allows the fitting of experimental data with initial moisture M0 and the equilibrium moisture ME as a function of Isothermal Dehydration Time (IDT). The moisture percentage for any time t and dehydration rate (isolines M(t) and isolines vI respectively) of the NCG is shown by means of matrix graphics as a simultaneous function of IDT and ST. The relationship between initial dehydration rate v0 and initial moisture M0 establishes as a function of ST. Also, the mathematical model associated with the solution of the second Fick's law allows calculating the diffusivity rate vk (H2O molecules out of NCG) and verify that the rate of change in moisture and the dynamical proportionality constant k has a non-linear dependence on the IDT and that k is directly proportional to Deff. The k values strongly relate to ST and the calcium ions percentage into NCG according to solubility lime values into cooking water (or nejayote) as a function of decreasing temperature when ST increases.
Collapse
Affiliation(s)
- Miguel Ángel Gruintal-Santos
- Universidad Autónoma de Guerrero, Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan, km 2.5 Carretera Iguala-Tuxpan, Iguala de la Independencia 40101, Mexico;
| | - María Teresa Zagaceta-Álvarez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Ciudad de México C.P. 02250, Mexico;
| | - Karen Alicia Aguilar Cruz
- Instituto Politécnico Nacional, Centro de Investigación en Computación, Unidad Zacatenco, Ciudad de México C.P. 07738, Mexico;
| | | | | | - Jose Luis Fernández-Muñoz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México C.P. 11500, Mexico
- Correspondence:
| |
Collapse
|
11
|
Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice. Int J Biol Macromol 2021; 182:595-611. [PMID: 33836198 DOI: 10.1016/j.ijbiomac.2021.03.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharides (MOP) on the serum indexes, small intestinal morphology, small intestinal metabolic profile, and caecal microbiota of mice. A new type of polysaccharides with 104,031 Da molecular weight and triple helix structure was isolated from M. oleifera leaves for in vivo experiment. Forty male SPF C57BL/6 mice aged 4 weeks were average divided into four groups randomly according to the MOP gavaged daily (0, 20, 40 and 60 mg/kg body weight MOP). After a 7-day preliminary trial period and a 28-day official trial period, the mice were slaughtered. Results showed that MOP reduced glucose, total cholesterol, and malondialdehyde. It also improved superoxide dismutase and catalase in serum (P < 0.05). For small intestinal morphology, MOP improved the villi length and crypt depth in both ileum and jejunum (P < 0.05); the ratio of villi length to crypt depth in jejunum increased (P < 0.05). MOP could cause the increase of beneficial bacteria and the decrease of harmful bacteria in caecum, further affecting the function of microbiota. In addition, MOP regulated 114 metabolites enriched in the pathway related to the synthesis and metabolism of micromolecules. In sum, MOP exerted positive effects on the serum indexes and intestinal health of mice.
Collapse
|
12
|
Purlis E, Cevoli C, Fabbri A. Modelling Volume Change and Deformation in Food Products/Processes: An Overview. Foods 2021; 10:778. [PMID: 33916418 PMCID: PMC8067021 DOI: 10.3390/foods10040778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Volume change and large deformation occur in different solid and semi-solid foods during processing, e.g., shrinkage of fruits and vegetables during drying and of meat during cooking, swelling of grains during hydration, and expansion of dough during baking and of snacks during extrusion and puffing. In addition, food is broken down during oral processing. Such phenomena are the result of complex and dynamic relationships between composition and structure of foods, and driving forces established by processes and operating conditions. In particular, water plays a key role as plasticizer, strongly influencing the state of amorphous materials via the glass transition and, thus, their mechanical properties. Therefore, it is important to improve the understanding about these complex phenomena and to develop useful prediction tools. For this aim, different modelling approaches have been applied in the food engineering field. The objective of this article is to provide a general (non-systematic) review of recent (2005-2021) and relevant works regarding the modelling and simulation of volume change and large deformation in various food products/processes. Empirical- and physics-based models are considered, as well as different driving forces for deformation, in order to identify common bottlenecks and challenges in food engineering applications.
Collapse
Affiliation(s)
| | - Chiara Cevoli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, Università di Bologna, 47521 Cesena, Italy;
| | - Angelo Fabbri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, Università di Bologna, 47521 Cesena, Italy;
| |
Collapse
|