1
|
Li H, Peng L, Yin F, Fang J, Cai L, Zhang C, Xiang Z, Zhao Y, Zhang S, Sheng H, Wang D, Zhang X, Liang Z. Research on Coix seed as a food and medicinal resource, it's chemical components and their pharmacological activities: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117309. [PMID: 37858750 DOI: 10.1016/j.jep.2023.117309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coix lacryma-jobi var. ma-yuen (Romanet du Caillaud) Stapf is a plant of the genus Coix in the Gramineae family. Coix seed is cultivated in various regions throughout China. In recent years, with the research on the medicinal value of Coix seed, it has received more and more widespread attention from people. Numerous pharmacological effects of Coix seed have been demonstrated through modern pharmacological studies, such as hypoglycemia, improving liver function, anti-tumor, regulating intestinal microbiota, improving spleen function, and anti-inflammatory effects. AIMS OF THE STUDY This article is a literature review. In recent years, despite the extensive research on Coix seed, there has yet to be a comprehensive review of its traditional usage, medicinal resources, chemical components, and pharmacological effects is still lacking. To fill this gap, the paper provides an overview of the latest research progress on Coix seed, aiming to offer guidance and references for its further development and comprehensive utilization. MATERIAL AND METHODS To gather information on the traditional usage, phytochemical ingredients, and pharmacological properties of Coix seed, we conducted a literature search using both Chinese and English languages in five databases: PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Springer. RESULTS This article is a literature review. The chemical constituents of Coix seed include various fatty acids, esters, polysaccharides, sterols, alkaloids, triterpenes, tocopherols, lactams, lignans, phenols, flavonoids and other constituents. Modern pharmacological research has indeed shown that Coix seed has many pharmacological effects and is a natural anti-tumor drug. In addition to its anti-tumor effect, it also has pharmacological effects such as hypoglycemia, improving liver function, regulating intestinal microbiota, improving spleen function, and anti-inflammatory effects. CONCLUSIONS This article provides a brief overview of the traditional uses, biotechnological applications, chemical components, and pharmacological effects of Coix seed. It highlights the importance of establishing quality standards, discovering new active ingredients, and exploring pharmacological mechanisms in Coix seed research. The article also emphasizes the significance of clinical trials, toxicology studies, pharmacokinetics data, and multidisciplinary collaboration for further advancements in this field. Overall, it aims to enhance understanding of Coix seed and its potential in pharmaceutical development and wellness products.
Collapse
Affiliation(s)
- Hongju Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lingxia Peng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Yin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahao Fang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lietao Cai
- R&D Center of Kanglaite, Hangzhou, 310018, China
| | | | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China
| | - Yuyang Zhao
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuifeng Zhang
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Fangyuan Test Group Co., LTD, Hanghzou, 310018, China
| | - Huadong Sheng
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Fangyuan Test Group Co., LTD, Hanghzou, 310018, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Ma L, Zhang X, Xiao Y, Fang H, Zhang G, Yang H, Zhou Y. Fluorescence and colorimetric dual-mode immunoassay based on G-quadruplex/N-methylmesoporphyrin IX and p-nitrophenol for detection of zearalenone. Food Chem 2023; 401:134190. [DOI: 10.1016/j.foodchem.2022.134190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
4
|
A bifunctional AuNP probe-based enzyme-linked immunosorbent assay for facile and ultrasensitive detection of trace zearalenone in coix seed. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Guan K, Huang R, Liu H, Huang Y, Chen A, Zhao X, Wang S, Zhang L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods 2022; 11:foods11192983. [PMID: 36230059 PMCID: PMC9562022 DOI: 10.3390/foods11192983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/02/2023] Open
Abstract
Indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) is an ideal immunoassay method for large-scale screenings to detect mycotoxin contaminants. However, the matrix effect of complicated samples has always been challenging when performing immunoassays, as it leads to false-positive or negative results. In this study, convenient QuEChERS technology combined with optimizing the dilution solvent was ingeniously used to eliminate interference from the sample matrix to greatly improve the detection accuracy, and reliable ic-ELISAs for the two official tolerance levels of 60 and 500 μg/kg were developed to screen zearalenone (ZEN) in edible and medical coix seeds without any further correction. Then, the 122 batches of coix seeds were determined, and the positive rate was up to 97.54%. The contaminated distribution was further analyzed, and risk assessment was subsequently performed for its edible and medical purposes. The findings indicated that consumption of coix seeds with higher ZEN contamination levels may cause adverse health effects for both medical and edible consumption in the adult population; even under the condition of average contamination level, ZEN from coix seeds was the more prominent contributor to the total risk compared to other sources when used as food; thus, effective prevention and control should be an essential topic in the future.
Collapse
Affiliation(s)
- Kaiyi Guan
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rentang Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yuxin Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
- Correspondence: (X.Z.); (L.Z.)
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.Z.); (L.Z.)
| |
Collapse
|
6
|
Shen Y, Jia F, Liang A, He Y, Peng Y, Dai H, Fu Y, Wang J, Li Y. Monovalent Antigen-Induced Aggregation (MAA) Biosensors Using Immunomagnetic Beads in Both Sample Separation and Signal Generation for Label-Free Detection of Enrofloxacin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8816-8823. [PMID: 35133806 DOI: 10.1021/acsami.1c23398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new functions of nanomaterials can help facilitate the development of biosensors for the detection of antibiotics. Herein, a new detection modality based on monovalent antigen-induced aggregation (MAA) of immunomagnetic beads (IMBs) was proposed for rapid and label-free detection of enrofloxacin (ENR), which endowed IMBs with the abilities of both sample separation and signal generation. In the presence of ENR, the initially well-dispersed IMBs were aggregated and the degree of aggregation was in a concentration-dependent manner. After exploring the mechanism underlying IMB aggregation and investigating the key parameters affecting it, a label-free biosensing platform was developed for rapid and sensitive detection of ENR. Based on the significant differences in the magnetic separation speed and size between the aggregated and well-dispersed IMBs, two methods were proposed for quantitatively determining ENR, i.e., measuring the turbidity of the IMB supernatant after magnetic separation for a given time and visualizing and calculating the grayscale value of the aggregated IMBs trapped on the surface of a nitrocellulose membrane. A three-dimensional (3D)-printed syringe was designed and fabricated for automatic filtration of IMBs. This immunosensor allowed for sensitive detection of ENR in less than 15 min without any labels. It exhibited a satisfactory limit of detection of 0.79 ng mL-1 and showed the feasibility for ENR detection of spiked chicken meat with recovery rates ranging from 74.8 to 98.3%. The MAA immunosensor can act as a promising tool to detect trace levels of ENR and has the potential to be applied to complex food samples.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Jia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Aoming Liang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yawen He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaping Peng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huang Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianping Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Xing K, Peng J, Chen W, Fang B, Liu D, Shan S, Zhang G, Huang Y, Lai W. Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chem 2022; 370:131365. [PMID: 34662795 DOI: 10.1016/j.foodchem.2021.131365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Mycotoxin contamination of corn has been considered a serious problem because it can accumulate in different organs or tissues via ingestion or skin contact and cause several health problems in humans. We have constructed a label-free, colorimetric, and fluorescence dual-channel sensing platform for the detection of zearalenone. Here, we demonstrate that plasmonic gold nanoparticles aggregates could be rapidly formed on the basis of charge neutralization by positively charged SYBR Green I. The sensing platform allowed quantitative detection as low as 0.89 μg kg-1 and visual detection as low as 2.5 μg kg-1. The charge neutralization strategy eliminates a major source of instability in conventional gold nanoparticles colorimetric measurements and paves the way for accurate, label-free bioanalysis.
Collapse
Affiliation(s)
- Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Shan Shan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330012, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yina Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Kumari A, Joshua R, Kumar R, Ahlawat P, Sindhu SC. Fungal Mycotoxins: Occurrence and Detection. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|