1
|
Bian N, Wu Z, Wang J, Sun N, Wang Z, Zhang G, Zhu L. Understanding key component factors influencing the processing performance of extruded foxtail millet. Int J Biol Macromol 2025; 307:142286. [PMID: 40112967 DOI: 10.1016/j.ijbiomac.2025.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
This study elucidated the relationship among physicochemical properties of native/extruded foxtail millet, rheological properties, and processing performance of dough made from extruded millet through an in-depth exploration utilizing Pearson correlation, principal component, and K-means cluster analysis. Results showed that crude protein (8.21 %-9.27 %) and lipid content (1.47 %-5.19 %), peak time (4.6-5.3 min), and starch short-range order (R995/1016) of native millet (1.564-1.901) were pivotal in shaping the molecular dynamics, degradation and reorganization processes during extrusion. Notably, heightened levels of crude protein and lipid content, alongside increased short-range order of starch in native millet, hindered the disorder and reorganization of starch, resulting in decreased expansion ratio, degree of gelatinization, water solubility index, and R995/1016 value. These factors significantly impacted dough properties, leading to increased hardness and elasticity while concurrently reducing viscosity. K-means cluster analysis classified 11 foxtail millet varieties into three groups: those exhibiting high hardness (9.26 % protein, 3.77 % lipid and R995/1016 = 1.87) (1), exceptional springiness (8.58 % protein, 1.77 % lipid and R995/1016 = 1.75) (2), and advantageous viscosity (8.46 % protein, 1.82 % lipid and R995/1016 = 1.71) (3).
Collapse
Affiliation(s)
- Ni Bian
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China.
| | - Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China.
| | - Naxin Sun
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| | - Zixi Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Guodong Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Linfeng Zhu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
2
|
Wu D, Cheng L, Ma P, Hong Y, Li Z, Li C, Ban X, Gu Z. Effect of different initiators on the properties of diacetone acrylamide grafted starch-based adhesive. Int J Biol Macromol 2024; 280:136005. [PMID: 39326600 DOI: 10.1016/j.ijbiomac.2024.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Environmentally friendly and non-toxic bio-based adhesives are emerging as the most promising substitutes for petroleum-based adhesives, attracting increasing attention. This work involved the synthesis of a starch-based adhesive for particleboards by grafting diacetone acrylamide (DAAM) onto starch. The graft polymerization was initiated using three different initiators: ammonium persulfate (APS), hydrogen peroxide (H2O2)/ammonium ferrous sulfate system, and ceric ammonium nitrate (CAN). A comparative study was conducted to assess the varying effects of these initiators. The results showed that in the graft copolymerization of starch with DAAM, different initiators produced different types of free radicals, and CAN initiation produced alkyl radicals and long-chain alkyl radicals with a peak total spin value of 3.96 × 1015, and thus had the highest grafting efficiency and grafting rate of 72.59 % and 16.75 %, respectively. From the comparison of the total number of spins, it can be seen that CAN is more targeted for starch initiation. In addition, characterization results from Fourier transform infrared spectroscopy and confocal Raman spectroscopy showed that DAAM underwent a graft copolymerization reaction with starch. Notably, the adhesive initiated by CAN demonstrated the highest water resistance and mechanical strength, with an absorption thickness expansion and static bending strength of 8.52 % and 10.56 MPa, respectively.
Collapse
Affiliation(s)
- Dongdong Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Karow MF, Santos FND, Biduski B, Krolow ACR, Silva FTD, El Halal SLM, Macagnan KL, Zavareze EDR, Dias ARG, Diaz PS. Natural fermentation of potato (Solanum tuberosum L.) starch: Effect of cultivar, amylose content, and drying method on expansion, chemical and morphological properties. Int J Biol Macromol 2024; 261:129608. [PMID: 38266846 DOI: 10.1016/j.ijbiomac.2024.129608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Natural fermentation with sun-drying is a modification that promotes the expansion capacity of starch, and its effects on potato starch have not been reported so far. The aim of this study was to evaluate the effects of the amylose content of potato (Solanum tuberosum L.) starches and natural fermentation followed by oven or sun drying on its properties. Cassava starch was also used a control. Native and fermented starches were evaluated based on their chemical composition, amylose, carboxyl and carbonyl content as well as their thermal, pasty, and morphological properties. The fermentation water was evaluated by pH and titratable acidity to control the process. Puffed balls were prepared to evaluate expandability, mass loss, porosity and texture. The fermentation intensity was greater for potato and cassava starch with low-amylose content than for potato starch with higher amylose content. In addition, the acidity of the fermentation water increased faster with cassava starch than with potato starches. The fermented potato starches with the highest amylose content had low acidity and low expansion capacity compared to the fermented potato and cassava starches with low-amylose content. Fermentation and sun-drying of low-amylose potato and cassava starches increased the expansion and reduced the hardness of the puffed balls.
Collapse
Affiliation(s)
- Marisa Ferreira Karow
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil..
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland
| | | | - Francine Tavares da Silva
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Shanise Lisie Mello El Halal
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Karine Laste Macagnan
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Food Nanotechnology (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, 96010-900, Brazil
| |
Collapse
|
4
|
Zhao G, Liu C, Li L, Li J, Wang J, Fan X, Zheng X. Structural characteristics and paste properties of wheat starch in natural fermentation during traditional Chinese Mianpi processing. Int J Biol Macromol 2024; 262:129993. [PMID: 38325684 DOI: 10.1016/j.ijbiomac.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/09/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Fermentation plays a crucial role in traditional Chinese mianpi processing, where short-term natural fermentation (within 24 h) is considered advantageous for mianpi production. However, the influence of short-term natural fermentation on the properties of wheat starch is not explored yet. Hence, structural characteristics and paste properties of wheat starch during natural fermentation were investigated in this study. The findings revealed that fermenting for 24 h had a slight effect on the morphology of wheat starch but significantly decreased the particle size of starch. Compared to native wheat starch, the enzyme activity produced during fermentation may destroy the integrity of starch granules, resulting in a lower molecular weight but higher relative crystallinity and orderliness of starch. After 24 h of natural fermentation, higher solubility and swelling power were obtained compared to non-fermentation. Regarding paste properties, fermented starches exhibited higher peak viscosity and breakdown, along with lower final viscosity, tough viscosity, and setback. Furthermore, the hardness, gel strength, G', and G" decreased after fermentation. Clarifying changes in starch during the short-term natural fermentation process could provide theoretical guidance for improving the quality and production of short-term naturally fermented foods such as mianpi, as discussed in this study.
Collapse
Affiliation(s)
- Guiting Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiasheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangqi Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Yang N, Gao W, Zou F, Tao H, Guo L, Cui B, Lu L, Fang Y, Liu P, Wu Z. The relationship between molecular structure and film-forming properties of thermoplastic starches from different botanical sources. Int J Biol Macromol 2023; 230:123114. [PMID: 36599387 DOI: 10.1016/j.ijbiomac.2022.123114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
To illustrate the correlations between molecular structures and the film-forming properties of thermoplastic starch from various botanical sources, starches from cereal, tuber and legume were modified by thermoplastic extrusion and the corresponding thermoplastic starch films were prepared including thermoplastic corn starch (TCS), thermoplastic rice starch (TRS), thermoplastic sweet potato starch (TSPS), thermoplastic cassava starch (TCAS) and thermoplastic pea starch (TPES) films. TPES film displayed a higher tensile strength (6.28 MPa) and stronger water resistance, such as lower water solubility (15.70 %), water absorption (42.35 %), and water vapor permeability (0.285 g·mm·h-1·m-2·kPa-1) due to higher contents of amylose and B1 chains. TCAS showed a smoother and more amorphous film due to higher amylopectin content, resulting higher elongation at break and larger opacity. TCS film was the most transparent due to a compacter network and more ordered crystallinity structure, which was suit for the packaging of fresh vegetables and aquatic products, whereas TCAS film was the opaquest, which protected package foods from light such as meat products, etc. The outcome would provide an innovative theory to regulate accurately the functional properties of thermoplastic starch films for different food needs.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
6
|
Zou J, Li Y, Wang F, Su X, Li Q. Relationship between structure and functional properties of starch from different cassava (Manihot esculenta Crantz) and yam (Dioscorea opposita Thunb) cultivars used for food and industrial processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Dufour D, Rolland-Sabaté A, Mina Cordoba HA, Luna Melendez JL, Moreno Alzate JL, Pizzaro M, Guilois Dubois S, Sánchez T, Eiver Belalcazar J, Morante N, Tran T, Moreno-Santander M, Vélez-Hernández G, Ceballos H. Native and fermented waxy cassava starch as a novel gluten-free and clean label ingredient for baking and expanded product development. Food Funct 2022; 13:9254-9267. [PMID: 35980275 DOI: 10.1039/d2fo00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amylose-free and wild-type cassava starches were fermented for up to 30 days and oven- or sun-dried. The specific volume (ν) after baking was measured in native and fermented starches. The average ν (across treatments) for waxy starch was 3.5 times higher than that in wild-type starches (17.6 vs. 4.8 cm3 g-1). The best wild-type starch (obtained after fermentation and sun-drying) had considerably poorer breadmaking potential than native waxy cassava (8.4 vs. 16.4 cm3 g-1, respectively). The best results were generally obtained through the synergistic combination of fermentation (for about 10-14 days) and sun-drying. Fermentation reduced viscosities and the weight average molar mass led to denser macromolecules and increased branching degree, which are linked to a high loaf volume. The absence of amylose, however, was shown to be a main determinant as well. Native waxy starch (neutral in taste, gluten-free, and considerably less expensive than the current alternatives to cassava) could become a new ingredient for the formulation of clean label-baked or fried expanded products.
Collapse
Affiliation(s)
- Dominique Dufour
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Hansel A Mina Cordoba
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jorge Luis Luna Melendez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jhon Larry Moreno Alzate
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mónica Pizzaro
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Teresa Sánchez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - John Eiver Belalcazar
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nelson Morante
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Thierry Tran
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | | | - Hernán Ceballos
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
8
|
Kazerski RTDS, Biduski B, Weber FH, Plata-Oviedo MSV, Gutkoski LC, Bertolin TE. Substitution of chemically modified corn starch with heat-moisture treated cassava starch in Brazilian pão de queijo. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
10
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
11
|
|
12
|
Teng X, Zhang M, Mujumdar AS. Strategies for controlling over-puffing of 3D-printed potato gel during microwave processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Cheng Y, Sun C, Zhai X, Zhang R, Zhang S, Sun C, Wang W, Hou H. Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int J Biol Macromol 2021; 185:1005-1014. [PMID: 34217745 DOI: 10.1016/j.ijbiomac.2021.06.203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
The effects of various physical state lipids (rapeseed oil (RO), shortening (ST), beeswax (BW)), on the physicochemical properties of starch (S) (hydroxypropyl distarch phosphate (HP), oxidized hydroxypropyl starch (OS))/gelatin (G) blown films were studied. S/G-lipid blends showed decreased storage modulus and complex viscosity. The formation of hydrogen bonds was inhibited by the ST and BW, but facilitated by the RO. Compared with BW and ST, RO was more effective to promote the melted and fractured of starch. Lipids addition promoted the compatibility of starch and gelatin. The presence of the lipids significantly improved the surface hydrophobicity, mechanical, water vapor barrier and water resistance properties of S/G films. S/G-RO films exhibited the strongest surface hydrophobicity and tensile strength, while HP/G-BW film showed the strongest water resistance and water vapor barrier properties. These results revealed that the appropriate lipids could be used to produce S/G-lipid films with desirable physicochemical properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cong Sun
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaosong Zhai
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Zhang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shikai Zhang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chanchan Sun
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science &Technology), Ministry of Education, Tianjin 300457, China
| | - Wentao Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Hanxue Hou
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|