1
|
Sun Y, Du F, Huang Y, Miao J, Lai K. Effects of heat treatments, storage and reheating on volatile compounds in pork and screening for characteristic volatile compounds. Meat Sci 2025; 222:109740. [PMID: 39824009 DOI: 10.1016/j.meatsci.2025.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Affiliation(s)
- Yunxiang Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Du
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Hunan 410076, China.
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China.
| |
Collapse
|
2
|
Chen X, Liu H, Li C, Xu Y, Xu B. Revealing the characteristic aroma and boundary compositions of five pig breeds based on HS-SPME/GC-O-MS, aroma recombination and omission experiments. Food Res Int 2024; 178:113954. [PMID: 38309911 DOI: 10.1016/j.foodres.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
To clarify the characteristic aroma compounds and flavor discrepancies of five Chinese typical pig species, headspace-solid phase microextraction gas chromatography-olfactometry-mass spectrometry (HS-SPME/GC-O-MS), electronic nose (E-nose), aroma recombination and omission experiments were used to analyze the characteristic aroma and boundary of five boiled pork. A total of 38 volatile compounds were identified, of which 14 were identified as important odorants with odor-activity values (OAVs) greater than 1. Aroma recombination and omission experiments revealed 8 key characteristic aroma compounds, which significantly contributed to the overall aroma. Sensory evaluation of the recombination model with the 8 aroma compounds scored 3.0 to 4.0 out of 5 points. 12 potential markers were identified to distinguish by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), including (E)-2-octenal, 3-ethyl-2-methyl-1,3-hexadiene, (E)-2-heptenal, 2-pentylfuran, cyclooctanol, 1-heptanol, sec-butylamine, D-limonene, N-vinylformamide, 2,3-octanedione, 2-ethylfuran and 3-pentanamine. Alongside benzaldehyde and pentanal, the combinations and fluctuations of these 14 aroma markers were proposed to constitute the aroma boundaries of different pork breeds. The aroma-active substances were able to effectively differentiate different breeds.
Collapse
Affiliation(s)
- Xueli Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Haoyue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China.
| | - Yujuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| |
Collapse
|
3
|
Liu Z, Huang Y, Kong S, Miao J, Lai K. Selection and quantification of volatile indicators for quality deterioration of reheated pork based on simultaneously extracting volatiles and reheating precooked pork. Food Chem 2023; 419:135962. [PMID: 37004364 DOI: 10.1016/j.foodchem.2023.135962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
This study was to screen and quantify characteristic volatiles tied to the quality deterioration of reheated pork via simultaneously reheating (75 °C, 30 min) and collecting headspace volatiles of precooked pork (100 °C, 10 min; stored: 0 °C, 0-14 d) for GC-MS analysis. The concentrations of hexanal (6.05 ± 0.86-12.05 ± 0.44 mg/kg), (E)-2-octenal (1.54 ± 0.16-3.07 ± 0.08 mg/kg), (E,E)-2,4-heptadienal (1.52 ± 0.44-2.58 ± 0.31 mg/kg) and 8 other selected volatiles in reheated pork increased as the storage time of the precooked counterparts increased. The increase rate of hexanal was 2.9-199 times faster than that of other volatiles based on zero-order reaction fitting (R2 = 0.876-0.997). Results from clustering analysis of these volatiles were consistent with their formation pathways tied to lipid autooxidation. This simple approach, reheating and collecting volatiles of precooked meat concurrently, introduces a new possibility for standardizing volatile analysis of precooked meats required being reheated before consumption.
Collapse
Affiliation(s)
- Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China.
| | - Shanshan Kong
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Putri LA, Rahman I, Puspita M, Hidayat SN, Dharmawan AB, Rianjanu A, Wibirama S, Roto R, Triyana K, Wasisto HS. Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. NPJ Sci Food 2023; 7:31. [PMID: 37328497 DOI: 10.1038/s41538-023-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Authentication of meat floss origin has been highly critical for its consumers due to existing potential risks of having allergic diseases or religion perspective related to pork-containing foods. Herein, we developed and assessed a compact portable electronic nose (e-nose) comprising gas sensor array and supervised machine learning with a window time slicing method to sniff and to classify different meat floss products. We evaluated four different supervised learning methods for data classification (i.e., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN), and random forest (RF)). Among them, an LDA model equipped with five-window-extracted feature yielded the highest accuracy values of >99% for both validation and testing data in discriminating beef, chicken, and pork flosses. The obtained e-nose results were correlated and confirmed with the spectral data from Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) measurements. We found that beef and chicken had similar compound groups (i.e., hydrocarbons and alcohol). Meanwhile, aldehyde compounds (e.g., dodecanal and 9-octadecanal) were found to be dominant in pork products. Based on its performance evaluation, the developed e-nose system shows promising results in food authenticity testing, which paves the way for ubiquitously detecting deception and food fraud attempts.
Collapse
Affiliation(s)
- Linda Ardita Putri
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Iman Rahman
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Mayumi Puspita
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
- Indonesian Oil Palm Research Institute, Jalan Taman Kencana No 1, Bogor, 16128, Indonesia
| | | | - Agus Budi Dharmawan
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Faculty of Information Technology, Universitas Tarumanagara, Jl. Letjen S. Parman No. 1, Jakarta, 11440, Indonesia
| | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung, 35365, Indonesia
| | - Sunu Wibirama
- Department of Electrical and Information Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta, 55281, Indonesia
| | - Roto Roto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia.
- Institute of Halal Industry and System (IHIS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia.
| | | |
Collapse
|
5
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Fu Y, Cao S, Yang L, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022; 46:e14439. [PMID: 36183160 DOI: 10.1111/jfbc.14439] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Meat product is popular throughout the world due to its unique taste. Flavor is one of the most important quality characteristics of meat products and also is a key influencing factor in the overall acceptability of meat products. The flavor of meat products is formed by precursors undergoing a series of complex reactions. During meat product processing, lipids are hydrolyzed by lipase to produce flavor precursors such as free fatty acid, then further oxidized to form volatile flavor compounds. This review summarizes lipolysis, lipid oxidation, and interaction of lipid with Maillard reaction and amino acid during meat products processing and storage as well as influencing factors on lipid degradation including raw meat (source of meat, feeding pattern, and castration), processing methods (thermal processing, nonthermal processing, salting, and fermentation) and additives. Meanwhile, the volatile compounds produced by lipids in meat products including aldehydes, alcohols, ketones, and hydrocarbons are summed up. Analytical methods of volatile compounds and the application of lipidomics analysis in mechanisms of flavor formation of meat products are also reviewed. PRACTICAL APPLICATIONS: Flavor is one of the most important quality characteristics of meat products, which influences the acceptability of meat products for consumption. Lipids play an important role in the flavor formation of meat products. Understanding the relationship between flavor compounds and changes in lipid compositions during the processing and storage of meat products will be helpful to control the quality of meat products.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
7
|
Yang X, Li Y, Wang P, Luan D, Sun J, Huang M, Wang B, Zheng Y. Quality changes of duck meat during thermal sterilization processing caused by microwave, stepwise retort, and general retort heating. Front Nutr 2022; 9:1016942. [PMID: 36337634 PMCID: PMC9630348 DOI: 10.3389/fnut.2022.1016942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 09/25/2023] Open
Abstract
The quality changes of duck meat during thermal sterilization using microwave, stepwise retort and general retort heating were evaluated. Results showed that compared with stepwise retort and general retort, duck meat subjected to microwave showed significantly higher gumminess, chewiness, cohesiveness and resilience as well as glutamic acid, lysine and total amino acids. Low-field NMR revealed that the relative content of immobilized water after microwave and stepwise retort treatment was significantly higher than that after general retort treatment. The relative content of 1-octen-3-ol with characteristic mushroom aroma was significantly higher with microwave and stepwise retort heating than with general retort heating, while 2-pentyl-furan with poor taste was only detected with general retort heating. The muscle bundles subjected to microwave were neatly arranged, similar to those with no thermal sterilization. Overall, the meat quality after three thermal sterilization treatment was microwave > stepwise retort > general retort.
Collapse
Affiliation(s)
- Xiaoqi Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Peng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing, China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yuandong Zheng
- Henan Province Qi County Yongda Food Co., Ltd., Hebi, China
| |
Collapse
|
8
|
Moran L, Vivanco C, Lorenzo JM, Barron LJR, Aldai N. Characterization of volatile compounds of cooked wild Iberian red deer meat extracted with solid phase microextraction and analysed by capillary gas chromatography - mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Characterisation of the volatile profile of microalgae and cyanobacteria using solid-phase microextraction followed by gas chromatography coupled to mass spectrometry. Sci Rep 2022; 12:3661. [PMID: 35256666 PMCID: PMC8901680 DOI: 10.1038/s41598-022-07677-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae and microalgae-derived ingredients are one of the top trends in the food industry. However, consumers’ acceptance and purchase intention of a product will be largely affected by odour and flavour. Surprisingly, the scientific literature present a very limited number of studies on the volatile composition of microalgae and cyanobacteria. In order to fill the gap, the main objective of the present study was to elucidate the volatile composition of seven microalgal and cyanobacterial strains from marine and freshwaters, with interest for the food industry while establishing its potential impact in odour. Among the seven selected strains, Arthrospira platensis showed the highest abundance and chemical diversity of volatile organic compounds (VOCs). Aldehydes, ketones, and alcohols were the families with the highest diversity of individual compounds, except in Arthrospira platensis and Scenedesmus almeriensis that showed a profile dominated by branched hydrocarbons. Marine strains presented a higher abundance of sulfur compounds than freshwater strains, while the ketones individual profile seemed to be more related to the taxonomical domain. The results of this study indicate that the VOCs composition is mainly driven by the individual strain although some volatile profile characteristics could be influenced by both environmental and taxonomical factors.
Collapse
|
10
|
Rapid Analysis of Fruit Acids by Laser-Engraved Free-Standing Terahertz Metamaterials. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Beldarrain LR, Morán L, Sentandreu MÁ, Barron LJR, Aldai N. Effect of ageing time on the volatile compounds from cooked horse meat. Meat Sci 2021; 184:108692. [PMID: 34653803 DOI: 10.1016/j.meatsci.2021.108692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
Volatile compounds from cooked and aged (0, 7, 14, 21 days) Hispano-Bretón horse meat (loin) were analyzed by solid-phase microextraction coupled to gas chromatography-mass spectrometry. A total of 77 volatile compounds were found, from which aldehydes were the predominant family. Most of the identified compounds had their origin in the degradation of lipids, with a negligible contribution of Maillard derived products. Odour impact ratios were calculated and used as indicators of the contribution of each compound to the total aroma and aldehydes were, in general, the major contributors to cooked horse meat aroma. Results revealed that ageing affected 15 of the volatile compounds detected. From them, hexadecanal and 2- and 3-methylbutanal significantly increased during ageing, presumably affecting the cooked meat odour as these have considerable odorant impact. Under the present study conditions, periods longer than 14 days would be necessary for significant changes in the volatile profile of cooked horse meat.
Collapse
Affiliation(s)
- Lorea R Beldarrain
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Lara Morán
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | | | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Abstract
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Collapse
|