1
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
2
|
Wu L, Zhu R, Han X, Chen Y, Long Z, Dong H, Chen X, Wu Y, Su Y, Zhang Z, Luo J. Sulfite altered permanganate effects on acetate-enriched short-chain fatty acids production during sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 371:128589. [PMID: 36627086 DOI: 10.1016/j.biortech.2023.128589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic fermentation is a promising method for waste activated sludge (WAS) treatment, but ineffective solubilization and hydrolysis limit its application. The current study examined the function of sodium sulfite (SDS) in potassium permanganate (PP)-conditioned WAS fermentation for short-chain fatty acids (SCFAs) biosynthesis. The presence of SDS in the PP system (PP/SDS) reduced the positive effects of PP on total SCFAs yield (2755 versus 3471 mg COD/L), while effectively increasing the proportion of acetate (from 41 to 81 %). Not only did SDS decrease the promoting effects of PP on WAS solubilization and hydrolysis efficiency by 5-42 %, it also shifted microbial metabolic pathways to favor acetate production. In addition, the amino acid metabolism with acetate as end product was enhanced. Moreover, PP/SDS inhibited methanogenesis, resulting in an accumulation of acetate in high quantities. Thus, the current study a provided insight and direction for effective WAS treatment with acetate-enriched SCFAs production.
Collapse
Affiliation(s)
- Lijuan Wu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Rui Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaoxia Han
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yan Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Zhen Long
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Hao Dong
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaojiang Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengyong Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China.
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Silva T, Pires A, Gomes D, Viegas J, Pereira-Dias S, Pintado ME, Henriques M, Pereira CD. Sheep's Butter and Correspondent Buttermilk Produced with Sweet Cream and Cream Fermented by Aromatic Starter, Kefir and Probiotic Culture. Foods 2023; 12:331. [PMID: 36673423 PMCID: PMC9857949 DOI: 10.3390/foods12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Small ruminant dairy products are common in some Mediterranean countries, in the Middle East and Africa, and can play a particular role in the development of rural areas. Butter has been the object of few research studies aimed at evaluating its potential as a vehicle for probiotic microorganisms. Moreover, the recovery of fermented buttermilk with functional properties can be considered an excellent opportunity to value this dairy byproduct. Therefore, the purpose of the present work was to develop different sheep butters and respective buttermilks after cream fermentation by: (1) a mesophilic aromatic starter (A); (2) a kefir culture (K); and (3) a mixture of probiotic bacteria (P). The butters and buttermilk produced with fermented cream were compared with non-fermented sweet cream (S) butter or buttermilk, respectively, regarding their physicochemical, microbiological and sensory characteristics. The adjusted production (%, w/v) obtained for butter were: S (44.48%), A (36.82%), K (41.23%) and P (43.36%). S, A and K butters had higher solids, fat and ashes contents than P butter. The probiotic butter had a total fat of ca. 75% (w/w), below the legal limits, while all others had fat levels above 81.5%. In all samples, the pH decreased and the acidity increased over 90 days of refrigerated storage. These variations were more evident in the P butter, which agrees with the highest lactic acid bacteria counts found in this sample. Differences in color between samples and due to storage time were also observed. In general, the butter samples tended to become darker and yellower after the 60th day of storage. Texture analysis showed comparable results between samples and greater hardness was observed for the P butter, most probably due to its higher relative saturated fatty acids content (66.46% compared to 62−64% in S, A and K butters). Regarding rheological properties, all butters showed pseudoplastic behavior, but butter P had the lowest consistency index (249 kPa.sn−1). The probiotic butter and the corresponding buttermilk had viable cell counts greater than 7 Log CFU/g, indicating their suitability as probiotic carriers. All products were well accepted by consumers and small, but non-significant, differences (p > 0.05) were observed in relation to the sensory parameters evaluated. In general, it can be concluded that the use of adequate starter cultures can allow the production of innovative and potentially healthier products, alongside the valorization of dairy byproducts, improving the income of small-scale producers.
Collapse
Affiliation(s)
- Tânia Silva
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
| | - Arona Pires
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
| | - David Gomes
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
| | - Jorge Viegas
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
| | - Susana Pereira-Dias
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
- Centro de Estudos dos Recursos Naturais Ambiente e Sociedade (CERNAS), 3045-601 Bencanta, Portugal
| | - Manuela E. Pintado
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta Henriques
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
- Centro de Estudos dos Recursos Naturais Ambiente e Sociedade (CERNAS), 3045-601 Bencanta, Portugal
| | - Carlos Dias Pereira
- Instituto Politécnico de Coimbra, Escola Superior Agrária, 3045-601 Bencanta, Portugal
- Centro de Estudos dos Recursos Naturais Ambiente e Sociedade (CERNAS), 3045-601 Bencanta, Portugal
| |
Collapse
|
4
|
Jia W, Zhu J, Wang X, Peng J, Shi L. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis. Molecules 2022; 27:molecules27082473. [PMID: 35458671 PMCID: PMC9029818 DOI: 10.3390/molecules27082473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.
Collapse
|
6
|
Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|