1
|
Harmoko H, Kartasasmita RE, Munawar H, Rohdiana D, Kurniawan F, Tjahjono DH, Fernández-Alba AR. Evaluation of 9,10-anthraquinone contamination in tea products from Indonesian manufacturers and its carcinogenic risk to consumer health. Food Chem Toxicol 2025; 196:115239. [PMID: 39778645 DOI: 10.1016/j.fct.2025.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
This study aimed to determine 9,10-anthraquinone (AQ) levels in Indonesian tea products from different manufacturers and assess the AQ's associated health risks. AQ levels increased significantly during withering and drying stages, using pinewood as a heat source. Generally, black tea was highly contaminated by AQ followed by green tea, oolong tea, and white tea. Out of a total of 116 samples from manufacturers using wood pellets as a heat source, 13% (15/116) of samples were contaminated with AQ exceeding the EU maximum residue level (MRL), and after accounting for measurement uncertainty, this value decreased to only 2% (2/116) that were deemed non-compliant. In contrast, 88% (57/65) and 50% (7/14) of tea samples were contaminated with AQ exceeding the EU MRL when manufacturers used pinewood and palm kernel shells as heat sources, respectively. However, based on our estimation, the risk level due to AQ exposure from Indonesian tea is still manageable, as indicated by calculating incremental lifetime cancer risk, <10⁻⁶ across all conditions studied (age group, type of tea, and heat source).
Collapse
Affiliation(s)
- Harmoko Harmoko
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia; Directorate of Standardization and Quality Control, Ministry of Trade, Republic of Indonesia, Jl. Raya Bogor Km. 26, Ciracas, Jakarta Timur, 13740, Indonesia.
| | - Rahmana Emran Kartasasmita
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Hasim Munawar
- Research Center for Chemistry, National Research and Innovation Agency, Gd. 452 Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten, 15314, Indonesia
| | - Dadan Rohdiana
- Department of Food Technology, Faculty of Agricultural Technology, Al Ghifari University, Indonesia
| | - Fransiska Kurniawan
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Daryono Hadi Tjahjono
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N°, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
2
|
Valduga AT, Gonçalves IL, Saorin Puton BM, de Lima Hennig B, Sousa de Brito E. Anthraquinone as emerging contaminant: technological, toxicological, regulatory and analytical aspects. Toxicol Res 2024; 40:11-21. [PMID: 38223676 PMCID: PMC10786786 DOI: 10.1007/s43188-023-00202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 01/16/2024] Open
Abstract
Anthraquinone (anthracene-9,10-dione) is a multifaceted chemical used in the paper industry, in the production of synthetic dyes, in crop protection against birds and is released from fossil fuels. Additionally, the anthraquinone scaffold, when substituted with sugars and hydroxyl groups is found in plants as metabolites. Because of these multiple applications, it is produced on a large scale worldwide. However, its toxicological aspects have gained interest, due to the low limits in the foods defined by legislation. Worrying levels of anthracene-9,10-dione have been detected in wastewater, atmospheric air, soil, food packaging and more recently, in actual foodstuffs. Recent investigations aiming to identify the anthracene-9,10-dione contamination sources in teas highlighted the packaging, leaves processing, anthracene metabolism, reactions between tea constituents and deposition from the environment. In this context, this review seeks to highlight the uses, sources, biological effects, analytical and regulatory aspects of anthracene-9,10-dione. Graphical Abstract
Collapse
Affiliation(s)
- Alice Teresa Valduga
- Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
- Graduate Program in Food Engineerng, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Itamar Luís Gonçalves
- Faculty of Medicine, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Bruna Maria Saorin Puton
- Graduate Program in Food Engineerng, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Bruna de Lima Hennig
- Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missões-Erechim, Avenida Sete de Setembro, Erechim, RS 1621 Brazil
| | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita 2270, Fortaleza, CE Brazil
| |
Collapse
|
3
|
Lu Y, Han H, Huang X, Yi Y, Wang Z, Chai Y, Zhang X, Lu C, Wang C, Chen H. Uptake and translocation of organic pollutants in Camellia sinensis (L.): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118133-118148. [PMID: 37936031 DOI: 10.1007/s11356-023-30441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Camellia sinensis (L.) is a perennial evergreen woody plant with the potential for environmental pollution due to its unique growth environment and extended growth cycle. Pollution sources and pathways for tea plants encompass various factors, including atmospheric deposition, agricultural inputs of chemical fertilizers and pesticide, uptake from soil, and sewage irrigation. During the cultivation phase, Camellia sinensis (L.) can absorb organic pollutants through its roots and leaves. This review provides an overview of the uptake and translocation mechanisms involving the absorption of polycyclic aromatic hydrocarbons (PAHs), pesticides, anthraquinone (AQ), perchlorate, and other organic pollutants by tea plant roots. Additionally, we summarize how fresh tea leaves can be impacted by spraying pesticide and atmospheric sedimentation. In conclusion, this review highlights current research progress in understanding the pollution risks associated with Camellia sinensis (L.) and its products, emphasizing the need for further investigation and providing insights into potential future directions for research in this field.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuchen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuexing Yi
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
4
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
5
|
Yang M, Luo F, Zhang X, Wang X, Sun H, Lou Z, Zhou L, Chen Z. Uptake, translocation, and metabolism of anthracene in tea plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152905. [PMID: 35031356 DOI: 10.1016/j.scitotenv.2021.152905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The origin of 9, 10-anthraquinone (AQ) contamination in tea remains unclear at present. The objective of this study was to test the hypothesis that AQ could be produced from the precursor anthracene in tea plantations. To test this hypothesis, the uptake, translocation, and transformation of anthracene in tea (Camellia sinensis) seedlings using hydroponic experimentation was investigated. Anthracene concentrations in tea tissues rose with increased anthracene exposure, which in the roots were significantly (p < 0.05) higher than those in aboveground parts at the end of the exposure. These results indicated that anthracene tended to be adsorbed into tea seedling via the roots and accumulated largely within roots. The three main pathways of anthracene degradation in tea seedlings were suggested: oxygen was incorporated in the 9th and 10th positions of anthracene resulting in AQ (I) and anthrone (II), and naphthalene was formed by ring fission of anthracene via methylanthracene (III). The principal anthracene metabolites were AQ and anthrone. The concentrations of AQ, like anthrone, were markedly elevated in the roots than those in stems throughout the entire exposure period. Moreover, the translocation factors for anthracene and its primary metabolites AQ and anthrone from roots to stems were persistently lower than 0.1, demonstrating a poor translocation from roots to the aboveground regions. However, tea seedlings could take anthracene up from water and translocate it to the leaves. It was a possible risk for AQ contamination in tea leaves continuously exposed to anthracene for long periods of time because tea plants were perennial crops.
Collapse
Affiliation(s)
- Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| |
Collapse
|