1
|
Ould Yahia Z, Xie L, Rashwan AK, Paul B, Liu S, Chen W. Gum Arabic modified nano-nutriosomes for curcumin encapsulation: Characterization, influence on physicochemical, microstructural and microbial properties of integrated yogurt. Int J Biol Macromol 2025; 308:142202. [PMID: 40120905 DOI: 10.1016/j.ijbiomac.2025.142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
As a hydrophobic compound, curcumin (Cur) requires modification to enhance stability in aqueous media, allowing its application in hydrophilic food matrix. This study aimed to improve the physicochemical stability of curcumin encapsulated in nano-nutriosomes (NU) decorated with gum Arabic (GA) polymer and their incorporation influence on the yogurt (Ygr) properties during 21 days of cold storage. The novel NU were nanosized (< 200 nm), with high encapsulation efficiency >90 % for Cur, spherical in shape, with an acceptable PDI < 0.3. The GA-Cur-NU significantly (p < 0.05) improved the Cur stability under thermal, pH and ionic conditions, as well as controlling the in vitro Cur release in PBS and different food simulants, confirming the improving effect of GA for better Cur stability. However, due to NU dispersion commercializing challenges in food, freeze-drying was employed to facilitate its application. Interestingly, The Cur was highly protected in freeze-dried FZD GA-Cur-NU with an encapsulation efficiency of 97.35 % compared to FZD Cur-NU 93.68 %. The yogurt gel network was strengthened after Cur-NU and GA-Cur-NU addition, improving the physicochemical properties, water holding capacity, color, texture, microstructure and LAB count of yogurt. Overall, the GA-coated NU could be a nano-carrier for Cur encapsulation and controlled delivery.
Collapse
Affiliation(s)
- Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Bolai Paul
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
2
|
Li J, Zhao Y, Zhang Y, Nardin C. Core-shell gelatin-chitosan nanoparticles with lysozyme responsiveness formed via pH-drive and transglutaminase cross-linking. Int J Biol Macromol 2025; 292:138802. [PMID: 39689799 DOI: 10.1016/j.ijbiomac.2024.138802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Lysozyme-responsive nanoparticles were fabricated using a hydrophilic protein (gelatin type A) as the core and a hydrophobic polysaccharide (chitosan) as the shell. In this study, curcumin was used as a model molecule for encapsulation and promoted the aggregation of gelatin nanoparticles. Transglutaminase catalyzed both intra-molecular cross-linking within gelatin and inter-molecular cross-linking between gelatin and chitosan. The formation mechanism of gelatin nanoparticles was investigated by molecular docking simulations, circular dichroism spectroscopy, UV-vis spectroscopy, turbidity analysis, and dynamic light scattering. Results indicated that pH-driven processes can induce molecular conformational changes of gelatin. However, these alone are insufficient to induce nanoparticle formation. Hydrogen bonding, Pi-alkyl interactions, Pi-Pi interactions, and van der Waals forces between gelatin and curcumin are crucial for the core formation. The coating mechanism of chitosan involved covalent bonds catalyzed by transglutaminase and electrostatic interactions, verified by dynamic light scattering and Fourier transform infrared spectroscopy. Physicochemical properties characterization revealed that the core-shell nanoparticles exhibited a maximum encapsulation efficiency of 97.2 ± 0.3 % and an average particle size of 120 ± 21 nm. The core-shell nanoparticles exhibited high thermal and pH stability, with curcumin retention rates exceeding 80 % under acidic, neutral, and weakly alkaline conditions, and detained thermal degradation up to 90 °C. Additionally, lysozyme responsiveness was evaluated by controlled curcumin release with varying lysozyme concentrations, through which enzymatic hydrolysis of chitosan by lysozyme triggered an increased release rate. In summary, core-shell nanoparticles synthesized from gelatin and chitosan may be effective target delivery systems for curcumin.
Collapse
Affiliation(s)
- Jilong Li
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France.
| |
Collapse
|
3
|
Huang M, Song Y, Wang H, Li H, Zhou R, Cao Q, Dong L, Ren G, Wu D, Lei Q, Fang W, Deng D, Xie H. Fabrication and characterization of lysozyme fibrils/Zein complexes for resveratrol encapsulation: Improving stability, antioxidant and antibacterial activities. Food Chem 2025; 464:141746. [PMID: 39454440 DOI: 10.1016/j.foodchem.2024.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Resveratrol (Res), a naturally occurring hydrophobic polyphenol, boasts numerous health-promoting bio-functionalities. However, its limited water solubility and stability impede further applications in the food industry. This study aims to address these challenges by fabricating stable Res-loaded lysozyme fibrils/zein (Ly-F/Z) complexes. The complexes were prepared using an antisolvent precipitation method. The interaction mechanism between Ly-F and zein was elucidated through dynamic light scattering, Fourier-transform infrared spectroscopy and dissociative experiments, revealing the involvement of hydrogen bonding, electrostatic forces and hydrophobic interactions in complex formation. The Ly-F/Z complexes were utilized to encapsulate Res, resulting in an encapsulation efficiency of 82.58 %. X-ray diffraction analysis confirmed the successful encapsulation of Res within Ly-F/Z complexes, presenting an amorphous state. The Ly-F/Z-Res complexes exhibited a "fruit tree" morphology with dense fruit, showcasing remarkable stability, antioxidant and antibacterial activities. Consequently, the Ly-F/Z complexes can serve as promising delivery systems for Res in functional foods.
Collapse
Affiliation(s)
- Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Han Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Rongmi Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping, 311100, Zhejiang, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
5
|
Hu Q, Tang X, Long R, Pan X, Shi S, Liu J, Pan Y, Li L, Gong L, Liao W, Zheng P, Luo X, Wang Q, Luo M, Fu C, Li R, Xiao H. Self-assembled nano delivery system of fenugreek polysaccharides: Effects on curcumin bioavailability and molecular mechanisms. Int J Biol Macromol 2025; 286:138294. [PMID: 39631596 DOI: 10.1016/j.ijbiomac.2024.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Self-assembly of fenugreek polysaccharides FS60 (a natural macromolecular material) with curcuminoid has been proved to improve curcumin (Cur) water dispersion in preliminary studies. This study further explored the effect of FS60 on Cur bioavailability in vivo to assess the significance of this delivery method. In this study, we optimized the formulation parameters of FS60-curcuminoid aggregates (FC) and studied their effects on Cur pharmacokinetics in rats. Results showed that the optimized aggregates had an encapsulation efficiency (EE) of 88.22 % and hydrodynamic diameter (DH) of 231.48 nm. Additionally, administering FC significantly increased curcumin glucuronide (Cur-O-Glu) levels. The Cmax was 51 times higher and AUC0-12h was 19 times higher than curcuminoid alone. Moreover, FS60 intervention for seven days increased the absorption speed of Cur-O-Glu into the bloodstream. Further mechanistic studies indicated that FS60 promoted Cur ingestion, increased UGT expression, and inhibited enterocyte transporters, allowing large amounts of Cur-O-Glu to enter the bloodstream. Moreover, the gut microbiota modulated by FS60 accelerated the mutual conversion of pentose and gluconate to provide sufficient glucuronic acid for the glucuronidation of Cur in enterocytes. Consequently, the nano delivery system composed by FS60 and curcuminoid facilitated gastrointestinal Cur glucuronidation and Cur-O-Glu absorption.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xinxing Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Rui Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiaoqi Pan
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yuan Pan
- Innovative Institute of Chinese Medicine and Pharmay, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Leiqiang Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Ping Zheng
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, PR China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, PR China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China; Sichuan Jinhong Keyou Biotechnology Co., Ltd, PR China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
6
|
Huang S, Li Y, Sun S, Liu TC, Xiao Q, Zhang Y. Prolamin and prolamin-polysaccharide composite nanoparticles for oral drug and nutrient delivery systems: A review. Int J Biol Macromol 2024; 283:137567. [PMID: 39549796 DOI: 10.1016/j.ijbiomac.2024.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Prolamin-based nanoparticles, particularly those composed of prolamin-polysaccharide composites, have garnered significant interest as oral delivery systems in recent research. This review provides a thorough analysis of the current advancements in these composite nanoparticles with prolamins derived from various cereals, including maize, wheat, sorghum, and millet, with a focus on their applications in oral drug delivery. It discusses the mechanisms by which these composites enhance nanoparticle performance, especially in terms of stability. The review also explores the differences among various prolamins and clarifies the reasons for their performance characteristics as encapsulants for nanoparticles. Additionally, it offers an in-depth examination of various preparation methods for these composite nanoparticles, such as the traditional anti-solvent method, pH-driven method, and several innovative techniques. The study highlights the physicochemical and encapsulation properties of these composite nanoparticles and underscores their novel applications, which hold promise for future use in the food and pharmaceutical sectors. The findings aim to support the integration of prolamin-polysaccharide composites into these industries, ultimately accelerating the development of new applications for these nanoparticles.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqian Sun
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Tristan C Liu
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
7
|
Zhao J, Jia W, Zhang R, Wang X, Zhang L. Improving curcumin bioavailability: Targeted delivery of curcumin and loading systems in intestinal inflammation. Food Res Int 2024; 196:115079. [PMID: 39614566 DOI: 10.1016/j.foodres.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Curcumin is a natural food ingredient and has the potential to alleviate inflammation and combat cancer. The incidence of intestinal inflammation has been increasing and poses a severe risk to human health. Due to low absorption and bioavailability, curcumin's anti-inflammatory ability is ineffective. To improve the bioavailability of curcumin, descriptions of the intestinal barrier, signaling pathways, and transport mechanisms are reviewed. Blocking the signaling pathways lowers the number of inflammatory cytokines produced, which is the primary mechanism by which curcumin relieves inflammatory symptoms. The bioavailability of curcumin is not only related to physicochemical properties but also to the nature of the carrier material. Environmental indicators also have an impact on the improvement of curcumin bioavailability in applications. There is a need to develop multifunctional and more stable nanomaterial targeting systems to improve curcumin bioavailability and achieve better results in nanotechnology research and targeted inflammation therapy.
Collapse
Affiliation(s)
- Junyi Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Zhang
- Keyi Sunshine Test, Xi'an 710021, China
| |
Collapse
|
8
|
Pokorski P, He R, Kurek MA. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques - A comprehensive review. Food Res Int 2024; 196:115012. [PMID: 39614470 DOI: 10.1016/j.foodres.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 12/01/2024]
Abstract
Phytosterols represent a diverse and complex category of lipophilic bioactive compounds, exhibiting excellent pro-healthy properties. However, their consumption in daily diets is insufficient, and their application in food production is hindered by challenges such as low water solubility, high reactivity, and rapid degradation. The adoption of different protein or their structural modification as hydrolysates as wall material into microencapsulation techniques can be associated with improved solubility, enhanced bioaccessibility, increased bioavailability, and an extension of shelf life. This contribution provides an overview of advancements in modifying functional properties through various protein isolation methods and structural changes resulting from enzymatic hydrolysis. Additionally, the paper considers the state of the art in the utilization of various techniques and the composition of wall material in the encapsulation of phytosterols and other common lipophilic phytochemicals incorporated into delivery systems. Protein isolates obtained through novel methods of extraction may be characterized by an enhancement of their functional properties, which is crucial for the microencapsulation process. It entails not only recognizing their role as protective barriers for core materials against environmental conditions but also acknowledging their potential health-promoting attributes. These attributes encompass antioxidant properties and enhanced functional characteristics compared to native proteins. Moreover, the exploration of protein hydrolysates as versatile wall materials holds significant promise. These hydrolysates offer exceptional protective features for core materials, extending beyond mere environmental shielding. The envisioned impact extends beyond conventional delivery systems, offering transformative potential for the future of drug delivery and nutraceutical formulations.
Collapse
Affiliation(s)
- Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ronghai He
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
9
|
Huang J, Liao J, Li X, Zhao H, Li H, Kuang J, Li J, Guo J, Huang T, Li J. Tea saponin-Zein binary complex as a quercetin delivery vehicle: preparation, characterization, and functional evaluation. Int J Biol Macromol 2024; 279:135485. [PMID: 39255893 DOI: 10.1016/j.ijbiomac.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
In this study, in order to solve the application problems of poor water solubility and low bioavailability of quercetin, we prepared a nano-delivery system with core-shell structure by anti-solvent method, including a hydrophilic shell composed of tea saponin and a hydrophobic core composed of Zein, which was used to improve the delivery efficiency and biological activity of quercetin. Through the optimal experiments, the loading rate and encapsulation rate of nanoparticles reached 89.41 % and 7.94 % respectively. And the water solubility of quercetin is improved by 30.16 times. At the same time, the quercetin acted with Zein through non-covalent interaction and destroyed its spatial network through structural characterization, while tea saponin covered the surface of Zein through electrostatic interaction, making it change into amorphous state. In addition, the addition of tea saponin makes the nanoparticles remain stable under the changes of external environment. During simulating gastrointestinal digestion procedure, ZQTNPs has higher release rate and bioavailability than free quercetin. Importantly, ZQTNPs can overcome the limitations of a single substance through synergy. These results will promote the innovative development of quercetin precision nutrition delivery system.
Collapse
Affiliation(s)
- Jianyu Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahao Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Zhao
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Hongxia Li
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Jian Kuang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianqiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbin Guo
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Wang X, Chen C, Bao Y, Wang Y, Leonidovna Strakh Y. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Food Res Int 2024; 189:114547. [PMID: 38876606 DOI: 10.1016/j.foodres.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.
Collapse
Affiliation(s)
- Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yana Leonidovna Strakh
- Belarusian State Technological University, Minsk, Belarus; Central Botanical Garden of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
11
|
Lin Z, Zhan L, Qin K, Li Y, Qin Y, Yang L, Sun Q, Ji N, Xie F. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Foods 2024; 13:1837. [PMID: 38928779 PMCID: PMC11202432 DOI: 10.3390/foods13121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Kaili Qin
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China;
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
12
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
13
|
Zhang M, Zhou N, Zhao L, Zhao L. Black rice anthocyanins nanoparticles based on bovine serum albumin and hyaluronic acid: Preparation, characterization, absorption and intestinal barrier function protection in Caco-2 monolayers. Int J Biol Macromol 2024; 267:131325. [PMID: 38604425 DOI: 10.1016/j.ijbiomac.2024.131325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Black rice anthocyanins (BRA) nanoparticles (NPs) were prepared using hyaluronic acid (HA), oxidized hyaluronic acid (OHA) and bovine serum albumin (BSA) to enhance the absorption and bioactivity of anthocyanins (ACNs). Results showed that HA/OHA-BSA-BRA NPs had a spherical morphology and excellent dispensability, with hydrated radius ~ 500 nm, zeta potential ~ - 30 mV, and encapsulation efficiency ~21 %. Moreover, using in vitro gastrointestinal release assay, we demonstrated that both BRA-loaded NPs exhibited effective controlled release properties of ACNs, significantly enhancing the accessibility of ACNs to the intestine. Cellular experiments showed that both two NPs had good biocompatibility and increased uptake of BRA. Furthermore, in comparison to the free BRA group, both BRA NPs groups significantly decreased the TEER value and increased the expression of tight junction proteins (Claudin 1, Occludin and ZO-1) in Caco-2 cell monolayers with LPS-induced damage. Therefore, our study demonstrated that HA/OHA-BSA-BRA NPs are promising carriers of ACNs and can effectively prevent the LPS-induced intestinal barrier injury in vitro.
Collapse
Affiliation(s)
- Mingxin Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China
| | - Na Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China.
| |
Collapse
|
14
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
Affiliation(s)
- Zineb Touzout
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| | - Naima Abdellaoui
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria.
| | - Assia Siham Hadj-Hamou
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| |
Collapse
|
16
|
Li H, Mustapha WAW, Liu J, Zhang X. Self-assembled nanoparticles of acid-induced fish ( Cyprinus carpio L.) scale gelatin: Structure, physicochemical properties, and application for loading curcumin. Food Chem X 2024; 21:101230. [PMID: 38426076 PMCID: PMC10901859 DOI: 10.1016/j.fochx.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
This work expands the functionality of fish scale gelatin (FSG) as a carrier of hydrophobic bioactive substances. The hydrophobicity of FSG was enhanced to promote its interaction with hydrophobic curcumin and to increase its bioavailability. This results in a remarkable increase in the curcumin loading capacity of acid-hydrolyzed FSG (HFSG) from 1.08 ± 0.08 μg/mg (0 h) to 9.15 ± 0.21 μg/mg (3 h). The amino acid composition indicated that acid hydrolysis effectively increased the ratio of hydrophobic amino acids of FSG. Acid hydrolysis facilitated the transformation of the α-helical conformation into a β-sheet structure. Hydrophobic interactions between HFSG and curcumin were strengthened by moderate acid hydrolysis. A sustained-release profile emerged for the curcumin-loaded HFSG during simulated gastrointestinal digestion, thereby improving the bioaccessibility and bioavailability of curcumin. These findings contribute to the application of acid hydrolysis in modifying FSG for enhanced hydrophobicity and curcumin loading capacity in the food industry.
Collapse
Affiliation(s)
- Haoxin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Jia Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- School of Liquor & Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China
| |
Collapse
|
17
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
18
|
Hu Y, Zhang L, Wei LF, Lu FY, Wang LH, Ding Q, Chen MS, Tu ZC. Liposomes encapsulation by pH driven improves the stability, bioaccessibility and bioavailability of urolithin A: A comparative study. Int J Biol Macromol 2023; 253:127554. [PMID: 37865359 DOI: 10.1016/j.ijbiomac.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Urolithin A (UroA) is gut metabolites of ellagitannins possessing a vast range of biological activities, but its poor water solubility and low bioavailability hinder its potential applications. This study utilized the pH dependent dissolution characteristics of UroA and employed a simple pH-driven method to load UroA into liposomes. The characterization and stability of obtained liposomes under different conditions were evaluated, and their oral bioavailability was tested by pharmacokinetics, and compared with UroA liposomes prepared using traditional thin film dispersion (TFM-ULs). Results indicated that liposomes could effectively encapsulate UroA. The UroA liposomes prepared by the pH-driven method (PDM-ULs) showed lower particle size, polydispersity index, zeta potential, and higher encapsulation efficiency than TFM-ULs. Interestingly, better thermal stability, storage stability, in vitro digestion stability, and higher bioaccessibility were also found on PDM-ULs. Moreover, pharmacokinetic experiments in rats demonstrated that PDM-ULs could significantly improve the bioavailability of UroA, with an absorption efficiency 1.91 times that of TFM-ULs. Therefore, our findings suggest that liposomes prepared by pH-driven methods have great potential in improving the stability and bioavailability of UroA.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 330006, China.
| | - Lin-Feng Wei
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Fei-Yan Lu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Le-Huai Wang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiao Ding
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ming-Shun Chen
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
19
|
Lv J, Zhou X, Wang W, Cheng Y, Wang F. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4908-4918. [PMID: 36929026 DOI: 10.1002/jsfa.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Native walnut protein is an alkali-soluble protein that seriously limits the application of walnut protein. The pH-shifting method could improve the solubility of walnut proteins and enable the encapsulation of active ingredients. The present study aimed to prepare water-soluble nanoparticles of curcumin using walnut protein and evaluate the process of walnut protein self-assembly, interaction between walnut protein and curcumin, encapsulation properties, and stability of nanoparticles. RESULTS The solubility of native walnut protein was poor, but the solubility of walnut protein nanoparticles (WPNP) formed by walnut protein after pH-shifting significantly improved to 91.5 ± 1.2%. This is because, during the process of pH changing from 7 to 12 and back to 7, walnut protein first unfolded under alkaline conditions and then refolded under pH drive, finally forming an internal hydrophobic and external hydrophilic shell-core structures. The quenching type of walnut protein and curcumin was static quenching, and the quenching constant was 2.0 × 1014 mol-1 L-1 s-1 , indicating that the interaction between walnut protein and curcumin was non-covalent. Adding curcumin resulted in the formation of nanoparticles with small particle size compared with the no-load. The loading capacity of curcumin-loaded walnut protein nanoparticles (WPNP-C) was 222 mg g-1 walnut protein isolate. Under the same mass, the curcumin equivalent concentration in aqueous solution of WPNP-C was 17 000 times higher than that of the native curcumin. CONCLUSION The solubility of the self-assembled WPNP significantly increased after pH-shifting treatment. The walnut protein carrier could improve the stability of the encapsulated curcumin. Therefore, walnut proteins could be used as water-soluble carriers for hydrophobic drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
- Department of Science and Engineering, Hebei Agricultural University, Cangzhou, China
| | - Xin Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenjie Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yifan Cheng
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Zhang X, Wei Z, Sun Y, Luo T, Xue C. Preparation of core-shell hordein/pectin nanoparticles as quercetin delivery matrices: Physicochemical properties and colon-specific release analyses. Food Res Int 2023; 170:112971. [PMID: 37316013 DOI: 10.1016/j.foodres.2023.112971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Quercetin (Que) is a hydrophobic flavanol that has the potential to prevent colon diseases. This study aimed to design hordein/pectin nanoparticle as a colon-specific delivery system for quercetin. The encapsulation efficiency, physicochemical stability and release properties of the nanoparticles were estimated. The FTIR and secondary structure analysis indicated that hydrogen bonds, hydrophobic interactions and electrostatic attractions were formed in the quercetin-loaded hordein/pectin nanoparticles (Que-hordein/pectin NPs). In comparison to Que-hordein NPs, Que-hordein/pectin NPs exhibited better colloidal stability (physical, UV light, heating and salt). Furthermore, the release properties studies showed that pectin coating restrained the premature release of Que from hordein NPs in gastric fluid and intestinal fluid. In-vitro release, when the Que-hordein/pectin NPs were exposed to simulated colonic fluid (SCF) for 6 h, quercetin was greatly released from the hordein/pectin NPs (15.29 ± 1.17% - 80.60 ± 1.78%). In-vivo release, the concentration of Que (μg/g) in Que-hordein/pectin NPs was 2.18 times higher than Que-hordein NPs in colon tissue after 6 h of oral administration. This study suggests that Que-hordein/pectin NPs have promising applications in the specific delivery and release of quercetin to the colon.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yuanjing Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tian Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
21
|
Zhong W, Li J, Wang C, Zhang T. Formation, stability and in vitro digestion of curcumin loaded whey protein/ hyaluronic acid nanoparticles: Ethanol desolvation vs. pH-shifting method. Food Chem 2023; 414:135684. [PMID: 36809722 DOI: 10.1016/j.foodchem.2023.135684] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Curcumin (CUR) was encapsulated in whey protein isolate/hyaluronic acid (WPI/HA) electrostatic nanoparticles at pH 5.4, 4.4, 3.4 and 2.4 using ethanol desolvation (DNP) or pH-shifting (PSNP) method. The prepared nanoparticles were characterized and compared for physiochemical properties, structure, stability, and in vitro digestion. PSNPs had smaller particle size, more uniform distribution, and higher encapsulation efficiency than DNPs. Main driving forces involved for fabricating the nanoparticles were electrostatic forces, hydrophobic forces, and hydrogen bonds. PSNP exhibited better resistance towards salt, thermal treatment, and long-term storage while DNPs showed stronger protection for CUR against thermal degradation and photodegradation. Stability of nanoparticles increased with decreasing pH values. In vitro simulated digestion exhibited that DNPs had lower release rate of CUR in SGF and higher antioxidant activity of its digestion products. Data may provide a comprehensive reference for selection of loading approach when constructing nanoparticles based on proteins/polysaccharides electrostatic complexes.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiatong Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
22
|
Synergistic effect of lecithin and alginate, CMC, or PVP in stabilizing curcumin and its potential mechanism. Food Chem 2023; 413:135634. [PMID: 36780858 DOI: 10.1016/j.foodchem.2023.135634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
This work aims to advance the understanding of the synergistic mechanism of lecithin and polymers (alginate, CMC, and PVP) in stabilizing curcumin, with a major focus on understanding the nanocomplex formation process and the main binding energy between molecules. It is demonstrated that lecithin and polymers have a synergistic effect in increasing the thermal acid, light, and digestion stability of curcumin. The potential mechanism is that the hydrophobic parts of curcumin molecules are first anchored at the region of the hydrophobic cavity of lecithin by van der Waals, while the hydrophilic parts are outward and are further encapsulated by hydrophilic polymers by van der Waals and electrostatic interaction to form a protective shell. This study contributes to our understanding of the synergistic mechanism of lecithin, polymers, and hydrophobic compounds, which can promote the synergistic use of lecithin and polymers to prepare nanocomplexes as an important tool for delivering bioactive compounds.
Collapse
|
23
|
Ai C, Zhao C, Xiang C, Zheng Y, Zhong S, Teng H, Chen L. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem X 2023; 18:100724. [PMID: 37397193 PMCID: PMC10314165 DOI: 10.1016/j.fochx.2023.100724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a kind of nanoparticle prepared using gum arabic as a sole wall material for loading curcumin was obtained. The properties and digestive characteristics of the curcumin-loaded nanoparticle were determined. Results showed that the maximum loading amount of the nanoparticle was 0.51 µg/mg with an approximately 500 nm size. The Fourier transform infrared (FTIR) spectrum showed that the complexation was mainly related to the -C[bond, double bond]O, -CH, and -C-O-C- groups. The curcumin-loaded nanoparticle exhibited good stability under highly concentrated salinity stress, and the stability of the curcumin loaded in nanoparticles was significantly higher than that of free curcumin under ultraviolet radiation. The curcumin loaded in nanoparticle was released mainly in the intestinal digestion stage, and the release process was sensitive to the pH changes rather than protease. In conclusion, these nanoparticles can be a potential nanocarrier for enhancing the stability of curcumin which can be applied in the salt-containing food system.
Collapse
Affiliation(s)
| | | | - Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
24
|
Fu L, Tan S, Si R, Qiang Y, Wei H, Huang B, Shi M, Fang L, Fu J, Zeng S. Characterization, stability and antioxidant activity of curcumin nanocomplexes with soy protein isolate and pectin. Curr Res Food Sci 2023; 6:100530. [PMID: 37377496 PMCID: PMC10290990 DOI: 10.1016/j.crfs.2023.100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin (Cur) has antioxidant, anti-inflammatory and other biological activities, but its poor stability, low water solubility and other defects limit the application. Herein, Cur was nanocomposited with soy isolate protein (SPI) and pectin (PE) for the first time and its characterization, bioavailability and antioxidant activity were discussed. The optimal encapsulation process of SPI-Cur-PE was as follow: the addition amount of PE was 4 mg, Cur was 0.6 mg and at pH of 7. It was observed by SEM that SPI-Cur-PE were partially aggregated. The average particle size of SPI-Cur-PE was 210.1 nm and the zeta potential was -31.99 mV. Through XRD, FT-IR and DSC analysis, the SPI-Cur-PE was formed through hydrophobic interaction and electrostatic interaction. The SPI-Cur-PE released more slowly in simulated gastrointestinal treatment and displayed higher photostability and thermal stability. SPI-Cur-PE, SPI-Cur and free Cur had scavenging activities for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals.
Collapse
Affiliation(s)
- Lijuan Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Feng W, Wang Z, Campanella OH, Zhang T, Miao M. Fabrication of phytoglycogen-derived core-shell nanoparticles: Structure and characterizations. Food Chem 2023; 423:136317. [PMID: 37182493 DOI: 10.1016/j.foodchem.2023.136317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The objective of this work was to investigate the fabrication of core-shell nanoparticles using phosphorylase-catalyzed chain extension of phytoglycogen, and to analyze the changes of structure and characterizations in detail. During the glucosylation reaction, the inorganic phosphate increased substantially up to 2.3 mg/mL in the initial 12 h, and then increased incrementally to 2.5 mg/mL at 24 h. The similar to trends was observed for increasing Mw and Rz over time, due to glucosyl transfers on the surface chain to form a corona around the phytoglycogen core with a larger size. Phosphorylase modification increases the percentages of longer chain fractions and the average chain length increased from degree of polymerization (DP) 11.6 to DP 48.2. The modified phytoglycogen exhibited the characteristic of B-type crystalline structure, indicating that the specific core-shell nanoparticle with inner amorphous nature and outer crystalline layer. The above results revealed that the potentiality of enzymatic chain elongation of phytoglycogen to design novel core-shell nanoparticle with tailor-made structure and functionality.
Collapse
Affiliation(s)
- Wenjuan Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ziqi Wang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
26
|
Mao Y, Huang W, Jia R, Bian Y, Pan MH, Ye X. Correlation between Protein Features and the Properties of pH-Driven-Assembled Nanoparticles: Control of Particle Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5686-5699. [PMID: 37012896 DOI: 10.1021/acs.jafc.3c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study sought to understand how the features of proteins impact the properties of nanoparticles assembled using the pH-shifting approach and the mechanism behind. Four legume protein isolates from faba bean, mung bean, soy, and pea were fractionated into natural aqueous-soluble (Sup) and aqueous-insoluble (Sed) fractions, which were proved to serve as shell and core, respectively, for the pH-driven-assembled nanoparticles. Using zein instead of Sed fractions as the core improved size uniformity, and particle size can be precisely controlled by adjusting core/shell ratios. Using the proteomic technique and silico characterization, the features of identified proteins indicated that hydrophobicity rather than molecular weight, surface charge, etc., mainly determined particle size. With molecular docking, structural analysis, and dissociation tests, the assembly of zein/Sup-based nanoparticles was dominantly driven by hydrophobic interactions. This study provides constructive information on the correlation between protein features and the properties of pH-driven-assembled nanoparticles, achieving a precise control of particle size.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Wenting Huang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Rongju Jia
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yangyang Bian
- The College of Life Science, Northwest University, Xi'an 710069, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
27
|
Łupina K, Kowalczyk D, Lis M, Basiura-Cembala M. Antioxidant polysaccharide/gelatin blend films loaded with curcumin - A comparative study. Int J Biol Macromol 2023; 236:123945. [PMID: 36924870 DOI: 10.1016/j.ijbiomac.2023.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Curcumin (CUR; 0, 0.005, 0.01, 0.02 %) was loaded into binary 75/25 blend films based on polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), octenyl succinic anhydride modified starch (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL). The GAR-based system was the least rough and, consequently, the most transparent of the films. An opposite result was found for the WSSP-based film. Despite the phase separation, the CMC75/GEL25 film exhibited excellent mechanical strength and stiffness. CUR improved the UV/VIS light-barrier characteristics of the films, but did not affect most of other physiochemical properties. X-ray diffractograms revealed that CUR provoked the rearrangement of the triple helical structure of GEL. As highly erodible, the CMC75/GEL25 carrier ensured the fastest and the most complete release of CUR. The OSA75/GEL25 system exhibited an opposite behavior. The kinetic profiles of the antiradical activity of the films did not reflect CUR release. A comparison of 2,2-diphenyl-1-picrylhydrazyl (DPPH*) scavenging on the plateau revealed that the CUR-supplemented films had quite comparable antiradical potential. The CMC75/GEL25 system exhibited the highest colorimetric stability, likely as a result of complete encapsulation of CUR in the GEL-rich microspheres. Weak symptoms of physical aging (enthalpy relaxation) were found in the films.
Collapse
Affiliation(s)
- Katarzyna Łupina
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Faculty of Natural Sciences and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Monika Basiura-Cembala
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| |
Collapse
|
28
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
29
|
Xu X, Peng X, Huan C, Chen J, Meng Y, Fang S. Development of natamycin-loaded zein-casein composite nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem 2023; 404:134659. [DOI: 10.1016/j.foodchem.2022.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
30
|
Wang S, Xie Y, Su H, Luo Y, Wang M, Li T, Fu Y. Delivery of curcumin in a carboxymethyl cellulose and hydroxypropyl methyl cellulose carrier: Physicochemical properties and biological activity. Int J Biol Macromol 2023; 239:124203. [PMID: 37001776 DOI: 10.1016/j.ijbiomac.2023.124203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Curcumin solid dispersions (Cur SDs) were prepared using hydroxypropyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (CMC) at different dosages. The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that the characteristic peak of curcumin shifted, and the addition of CMC enhanced this phenomenon. The addition of CMC reduced the contact angle, increased the surface free energy, and improved the solubility of Cur SDs. These changes were positively correlated with the amount of CMC. The surface morphology of Cur SDs changed from needle-like to sheet-like as observed by scanning electron microscopy. Cur SDs prepared by CMC and HPMC retained good biological activity. HT-29 human colon cancer cell analysis showed that the addition of CMC significantly improved the anti-proliferation effect of Cur SDs, thus enhancing the bioavailability of curcumin. Solid dispersions made with CMC and HPMC will be a promising hydrocolloid carrier to improve oral bioavailability and efficacy of curcumin.
Collapse
Affiliation(s)
- Shumin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yingxuan Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanran Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengting Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
31
|
Chen P, Wang RM, Xu BC, Xu FR, Ye YW, Zhang B. Food emulsifier based on the interaction of casein and butyrylated dextrin for improving stability and emulsifying properties. J Dairy Sci 2023; 106:1576-1585. [PMID: 36631321 DOI: 10.3168/jds.2022-22532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 01/11/2023]
Abstract
Green hydrophobically modified butyrylated dextrin (BD) was used to modulate casein (CN). The CN/BD complex nanoparticles were formed at different CN-to-BD mass ratios based on a pH-driven technology. The interaction force, stability, and emulsifying properties of complex nanoparticles were investigated. The nanoparticles had a negative charge and a small particle size (160.03, 152.6, 155.9, 206.13, and 231.67 nm) as well as excellent thermal stability and environmental stability (pH 4.5, 5.5, 6.6, 7.5, 8.5, and 9.5; ionic strength, 50, 100, 200, and 500 mM). Transmission electron microscopy demonstrated the successful preparation of complex nanoparticles and their spherical shape. Fourier transform infrared spectroscopy, fluorescence spectroscopy, and dissociation analysis results showed that the main driving forces of formed CN/BD nanoparticles were hydrogen bonding and hydrophobic interaction. Furthermore, the CN/BD nanoparticles (CN/BD mass ratio, 1:1; weight/weight) exhibited the lowest creaming index, and optical microscopy showed that it has the most evenly dispersed droplets after 7 d of storage, which indicates that the CN/BD nanoparticles had excellent emulsifying properties. Butyrylated dextrin forms complex nanoparticles with CN through hydrogen bonding and hydrophobic interaction to endow CN with superior properties. The results showed that it is possible to use pH-driven technology to form protein-polysaccharide complex nanoparticles, which provides some information on the development of novel food emulsifiers based on protein-polysaccharide nanoparticles. The study provided significant information on the improvement of CN properties and the development of emulsions based on CN.
Collapse
Affiliation(s)
- Pin Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ru-Meng Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Fei-Ran Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Ying-Wang Ye
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
32
|
Yu F, Wei Z, Chen J, Long Y, Qing Q, Li B, Zhang X, Chen H, Lan T, Zhu P, Shen P, Zeng W, Lin J, Qi Z, Hong X, Chen XD. Preparation of curcumin-loaded MPEG-PTMC nanoparticles: Physicochemical properties, antioxidant activity, and in vivo pharmacokinetic behavior. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
33
|
Nabipour H, Rohani S. Zirconium metal organic framework/aloe vera carrier loaded with naproxen as a versatile platform for drug delivery. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
34
|
Modulating the Assembly of Egg Yolk Granule-Based Delivery Systems using NaCl: Physicochemical Properties and Curcumin Bioactivity. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Yang QQ, Cai WQ, Wang ZX, Li Y, Zhang Y, Lin X, Su BL, Corke H, Zhang BB. Structural characteristics, binding behaviors, and stability of ternary nanocomplexes of lecithin, polyvinylpyrrolidone, and curcumin. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Wang J, Zhu H, Jiang Y, Xiao J, Yang B, Wen L. Fabrication of icariin-soymilk nanoparticles with ultrasound-assisted treatment. ULTRASONICS SONOCHEMISTRY 2022; 91:106230. [PMID: 36436486 PMCID: PMC9703041 DOI: 10.1016/j.ultsonch.2022.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound is effective to fabricate nanocomplex. Soymilk is a natural nanocarrier with good compatibility. However, information about soymilk-nutraceuticals nanocomplex is limited. In this work, soymilk was used to encapsulate icariin, a well known nutraceutical with poor bioavailability. The effect of ultrasound on the quality of icariin-soymilk nanocomplexes (ISNCs) was investigated. Ultrasound could reduce the particle size, improve the surface hydrophobicity and change the microstructure of soymilk. With increasing ultrasound treatment time, an increased surface hydrophobicity was observed. The highest encapsulation efficiency (89.67 %) and loading capacity (28.92 µg/mg) were found for USI-20, whereas the smallest particle size (132.47 nm) was observed for USI-120. USI-60 showed the lowest ζ-potential (-31.33 mV) and the highest bioaccessibility (76.08 %). Ultrasound could enhance the storage stability of ISNCs. The data of NMR and fluorescence indicated that ISNCs were mainly stabilized by hydrophobic interaction.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Xiao
- Faculty of Food Science and Technology, University of Vigo, Ourense E-32004, Spain
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
37
|
Hu Q, Ma R, Tang X, Long R, Wang Q, Fu C, Li R, Xiao H. Self-assembled nanoparticles of curcuminoids and soluble dietary fibers: Characterization and mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Wang Z, Xu J, Ji F, Liu H, Wang C, Luo S, Zheng Z. Glycated Soy β-Conglycinin Nanoparticle for Efficient Nanocarrier of Curcumin: Formation Mechanism, Thermal Stability, and Storage Stability. Foods 2022; 11:3703. [PMID: 36429295 PMCID: PMC9688953 DOI: 10.3390/foods11223703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, soy β-conglycinin (7S) was glycated with dextran of different molecular masses (40, 70, 150, 500 kDa) by the dry-heating method to synthesize soy β-conglycinin-dextran (7S-DEX) conjugates. The curcumin (Cur) loaded nanocomplexes were prepared based on 7S-DEX conjugates by a pH-driven self-assemble strategy to enhance the solubility and thermal stability of curcumin. Results showed that the 7S-150 conjugates (glycated from 7S with dextran (150 kDa)) could remain stable in the pH 3.0-pH 8.0 range and during the heat treatment. The results of fluorescence quenching and FT-IR indicated that glycated 7S were combined with curcumin mainly by hydrogen bonding and hydrophobic interaction, and 7S-150 conjugates had higher binding affinity than natural 7S for curcumin. The loading capacity (μg/mg) and encapsulation efficiency (EE%) of 7S-150-Cur were 16.06 μg/mg and 87.51%, respectively, significantly higher than that of 7S-Cur (12.41 μg/mg, 51.15%). The XRD spectrum showed that curcumin was exhibited in an amorphous state within the 7S-150-Cur nanocomplexes. After heating at 65 °C for 30 min, the curcumin retention of the 7S-150-Cur nanocomplexes was about 1.4 times higher than that of free curcumin. The particle size of 7S-150-Cur nanocomplexes was stable (in the range of 10-100 nm) during the long storage time (21 days).
Collapse
Affiliation(s)
- Zijun Wang
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jingjing Xu
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fuyun Ji
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Huihui Liu
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Shuizhong Luo
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
39
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Liu C, Xu B, McClements DJ, Xu X, Cui S, Gao L, Zhou L, Xiong L, Sun Q, Dai L. Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chem 2022; 391:133224. [PMID: 35623284 DOI: 10.1016/j.foodchem.2022.133224] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
The properties of nutraceutical-loaded biopolymer nanoparticles fabricated by antisolvent co-precipitation (ASCP) and precipitation (ASP) were compared. Curcumin-loaded zein-tea saponin nanoparticles were fabricated using both methods and then their structural and physicochemical properties were characterized. The diameter of the nanoparticles prepared by ASCP were smaller (120-130 nm) than those prepared by ASP (140-160 nm). The encapsulation efficiency of the ASCP-nanoparticles (80.0%) was higher than the ASP-ones (71.0%) at a zein-to-curcumin mass ratio of 3:1, which was also higher than previous studies. The storage and light stability of curcumin was higher in zein-saponin nanoparticles than in zein nanoparticles. All nanoparticles had good water dispersibility after freeze-drying and rehydration. This study shows that nanoparticles produced by antisolvent co-precipitation have superior properties to those produced by antisolvent precipitation. The co-precipitation method leads to a higher encapsulation efficiency, smaller particle size, and greater storage stability, which may be advantageous for some applications.
Collapse
Affiliation(s)
- Chaoran Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Bingxin Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | | | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Song Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China.
| |
Collapse
|
41
|
Yuan Y, Zhang S, Ma M, Xu Y, Wang D. Delivery of curcumin by shellac encapsulation: Stability, bioaccessibility, freeze-dried redispersibility, and solubilization. Food Chem X 2022; 15:100431. [PMID: 36211724 PMCID: PMC9532768 DOI: 10.1016/j.fochx.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Shellac can nano-encapsulate curcumin by pH cycle. The starting point of the design is economy, simplicity, energy saving and safety. High loading capacity of curcumin is the unique advantage of shellac nanoparticles. The nanoparticles had good physicochemical stability and bioaccessibility. The redispersibility is proportional to the mass ratio of shellac-to-curcumin.
Curcumin is an active ingredient with multiple functions, however, its application is limited by its low stability, bioaccessibility, freeze-dried redispersibility, and solubilization. The work aims to improve the application of curcumin (Cur) by encapsulation. Shellac was the wall material inspired by its pH-dependent deprotonation and amphiphilic nature to form nanoparticles. The curcumin/shellac nanoparticles (S/Cur) exhibited a bright spot of high loading capacity (the maximum of higher than 70 %), while still having high encapsulation efficiency (the minimum of higher than 85 %). Transmission electron microscopy showed that S/Cur was a spherical structure. It exhibited good physical stability, including pH (4.0–8.0), ionic strength (NaCl, < 900 mM), thermo stability (80 ℃, 180 min), and storage stability (light and dark, 4 and 25 ℃, 20 days). Meanwhile, the chemical stability was increased by encapsulation. Furthermore, the bioaccessibility of Cur was improved to 75.95 %, which is attributed to the pH response of shellac. Additionally, S/Cur had freeze-dried redispersibility and solubilization, which is proportional to the mass ratio of shellac-to-Cur. The mechanism of S/Cur formation involved hydrophobic interaction and hydrogen bonds, and the nanoconfined Cur was amorphous.
Collapse
|
42
|
Xie Y, Gong X, Jin Z, Xu W, Zhao K. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties. Int J Biol Macromol 2022; 222:2855-2867. [DOI: 10.1016/j.ijbiomac.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
43
|
Lin S, Cai X, Chen H, Xu Y, Wu J, Wang S. Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin. Curr Res Food Sci 2022; 5:1625-1639. [PMID: 36164327 PMCID: PMC9507993 DOI: 10.1016/j.crfs.2022.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research hotspot. In this work, a functional glycosylated fish gelatin (called FG-COS conjugates) carrier based on fish gelatin (FG) and chitooligosaccharide (COS) via Maillard reaction was developed. The functional carrier exhibited good antioxidant activity and high encapsulation of curcumin (Cur). Enhanced antioxidant effect of Cur loaded in FG-COS conjugates (called FG-COS-Cur nanoparticles) was achieved, showing remarkable UV protection on Cur and enhanced intracellular antioxidant activity of FG-COS-Cur nanoparticles. Remarkably, FG-COS-Cur nanoparticles increased the cell viability of H2O2-induced oxidative damage Caco-2 cells, drastically reduced the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), and significantly increased intracellular antioxidant enzyme activities, which all exhibited a dose-response relationship. These findings suggested that the FG-COS conjugates with intrinsic antioxidant activity could effectively encapsulate Cur and improved bioavailability for hydrophobic active molecules in functional food field.
Collapse
Affiliation(s)
- Sheng Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yizhou Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
44
|
Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Int J Biol Macromol 2022; 221:806-820. [PMID: 36099999 DOI: 10.1016/j.ijbiomac.2022.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Anti-inflammatory drugs for ulcerative colitis (UC) treatment should specifically penetrate and accumulate in the colon tissue. Herein, a multi-bioresponsive anti-inflammatory drug (curcumin, CUR)-loaded heterogeneous double-membrane microgels (CUR@microgels) for oral administration was fabricated in this study, in which the inner core was derived from polyvinyl alcohol (PVA) and guar gum (GG) and the outer gel was decoration with alginate and chitosan by polyelectrolyte interactions. The structure and morphology of microgels were characterized. In vitro, the formulation exhibited good bio-responses at different pH conditions and sustained-release properties in simulated colon fluid with a drug-release rate of 84.6 % over 34 h. With the assistance of the outlayer gels, the microgels effectively delayed the premature drug release of CUR in the upper gastrointestinal tract. In vivo studies revealed that CUR@microgels specifically accumulated in the colon tissue for 24 h, which suggest that the interlayer gels were apt to reach colon lesion. As expected, the oral administration of microgels remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. The above results indicated that these facilely fabricated microgels which exhibited excellent biocompatibility and multi-bioresponsive drug release, had an apparent effect on the treatment of UC, which represents a promising drug delivery strategy for CUR in a clinical application.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
45
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Encapsulation of EGCG by Zein-Gum Arabic Complex Nanoparticles and In Vitro Simulated Digestion of Complex Nanoparticles. Foods 2022; 11:foods11142131. [PMID: 35885374 PMCID: PMC9317346 DOI: 10.3390/foods11142131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has many excellent qualities such as its antitumor, antiradiation and anti-oxidation properties, but its application is limited because its oral bioavailability is low and stability is poor. In this paper, zein and gum arabic (GA) were used as wall materials to prepare Zein-GA complex nanoparticles for encapsulating and protecting the EGCG. The particle size of Zein-GA-EGCG complex nanoparticles ranged from 128.03–221.23 nm, and the EGCG encapsulation efficiency reached a maximum of 75.23% when the mass ratio of zein to GA was 1:1. The FTIR and XRD results illustrated that the components of the Zein-GA-EGCG complex nanoparticles interacted by electrostatic, hydrogen bonding, and hydrophobic interactions. The EGCG release rate of Zein-GA-EGCG nanoparticles (16.42%) was lower than that of Zein-EGCG (25.52%) during gastric digestion, and a large amount of EGCG was released during intestinal digestion, suggesting that the Zein-GA-EGCG nanoparticles could achieve the sustained release of EGCG during in vitro digestion. Hence, using Zein-GA complexes to encapsulate EGCG effectively increased the encapsulation efficiency of EGCG and realized the purpose of sustained release during simulated gastrointestinal digestion.
Collapse
|
47
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chem 2022; 395:133562. [PMID: 35763923 DOI: 10.1016/j.foodchem.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
In this study, glycated soy β-conglycinin (β-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of β-conglycinin-dextran conjugates (β-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of β-CG in the pH-shifting treatment. The structure of β-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, β-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of β-CG-Cur. Moreover, the reassembled β-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with β-CG-Cur, β-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, β-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.
Collapse
Affiliation(s)
- Zi-Jun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jing-Jing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Fu-Yun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dong-Dong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shao-Tong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
49
|
Impact of alginate block type on the structure and physicochemical properties of curcumin-loaded complex biopolymer nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Zhang L, Zhang M, Devahastin S, Liu K. Fabrication of curcumin encapsulated in casein-ethyl cellulose complexes and its antibacterial activity when applied in combination with blue LED irradiation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|