1
|
Sepeidnameh M, Fazlara A, Hosseini SMH, Pourmahdi Borujeni M. Encapsulation of grape seed oil in oil-in-water emulsion using multilayer technology: Investigation of physical stability, physicochemical and oxidative properties of emulsions under the influence of the number of layers. Curr Res Food Sci 2024; 8:100771. [PMID: 38831922 PMCID: PMC11145428 DOI: 10.1016/j.crfs.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Many studies have shown that grape seed oil (GSO) is one of the vegetable fats that are plentiful in essential fatty acids and can be used as a fat substitute or to modify fat in food products to reduce saturated fatty acids. However, due to its low solubility and high sensitivity to oxidation, it is necessary to develop delivery systems that can distribute GSO in food more effectively. Recently, the preparation of emulsions using the layer-by-layer (LBL) method has many advantages in delivering lipid-soluble functional compounds. This research was used to check the formation of GSO oil-loaded primary, secondary and tertiary multilayer emulsions stabilized by mixture of anionic gelatin, cationic chitosan, and anionic basil seed gum (BSG) as the aqueous phase at pH 5, prepared using a layer-by-layer electrostatic deposition technique. Multilayer emulsions prepared by GSO and a mixture of gelatin, chitosan, and BSG as the aqueous phase at pH 5. Finally, the effect of the number of layers on the physicochemical properties (particle size, viscosity, turbidity, refractive index, and physical stability) and oxidative stability (peroxide value, thiobarbituric acid value, and fatty acid profile) during the storage time (30 days) at two temperatures 25 °C & 4 °C was investigated. Also, the zeta potential and Fourier transform infrared spectroscopy (FTIR) of mono-layer and multi-layer emulsions were investigated. The results revealed that by increasing the number of layers of multi-layer emulsion of GSO, the stability has improved. Thus, the tertiary emulsion has been more effective than the other two emulsions in maintaining the physicochemical characteristics and stability over time (P < 0.001). Morphological characterization and FTIR spectroscopy results confirmed that gelatin, chitosan, and BSG were successfully loaded into the LBL emulsions. This study can improve the original percept of multilayer emulsions and promulgate their potential applications for the entire encapsulation of essential fatty acids to enrich and prevent peroxide attack.
Collapse
Affiliation(s)
- Marziyeh Sepeidnameh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Hosseini MS, Mohseni M, Naseripour M, Mirzaei M, Bagherzadeh K, Alemezadeh SA, Mehravi B. Synthesis and evaluation of modified lens using plasma treatment containing timolol-maleate loaded lauric acid-decorated chitosan-alginate nanoparticles for glaucoma. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1793-1812. [PMID: 36872905 DOI: 10.1080/09205063.2023.2187204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Reducing intraocular pressure (IOP) with eye drops is one of the most common ways to control glaucoma. Low bioavailability and high frequency of administration in eye drops are major challenges in ocular pharmacotherapy. Contact lenses have attracted the attention of scientists in recent decades as an alternative method. In this study, with the aim of long-term drug delivery and better patient compatibility, contact lenses with surface modification and nanoparticles were used. In this study, timolol-maleate was loaded into polymeric nanoparticles made of chitosan conjugate with lauric acid and sodium alginate. Then silicon matrix was mixed with a curing agent (10:1), and the suspension of nanoparticles was added to the precursor and cured. Finally, for surface modification, the lenses were irradiated with oxygen plasma at different exposure times (30, 60, and 150 s) and soaked in different BSA concentrations (1, 3, and 5% w/v). The results showed nanoparticles with a size of 50 nm and a spherical shape were synthesized. The best surface modification of the lenses was for 5 (% w/v) albumin concentration and 150 s exposure time, which had the highest increase in hydrophilicity. Drug release from nanoparticles continued for 3 days and this amount increased to 6 days after dispersion in the modified lens matrix. The drug model and kinetic study show the Higuchi model completely supported the release profile. This study represents the novel drug delivery system to control intra-ocular pressure as a candidate platform for glaucoma treatment. Improved compatibility and drug release from the designed contact lenses would prepare new insight into the mentioned disease treatment.
Collapse
Affiliation(s)
- Maryam Sadat Hosseini
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mohseni
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Bita Mehravi
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Iran University of Medical, Tehran, Iran
| |
Collapse
|
4
|
Zhao Q, Fan L, Zhou Y, Li J. Effect of chitosan-protocatechuic acid conjugate on stability and encapsulation capacity of polysaccharide-based high internal phase emulsion. Carbohydr Polym 2023; 304:120487. [PMID: 36641160 DOI: 10.1016/j.carbpol.2022.120487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The aim of this work was to fabricate chitosan-protocatechuic acid (CSPA) conjugates by free radical grafting method and use them as novel emulsifiers to inhibit lipid oxidation and delay the photodegradation rate of curcumin in polysaccharide-based high internal phase emulsions (HIPEs). Results of UV-vis, FT-IR and 1H NMR spectra demonstrated that PA had been successfully bonded to chitosan (CS) through ester and amino linkages. CSPA conjugates (especially those with the ratio of CS to PA of 1:0.75) showed significantly increased water solubility and antioxidant activity than CS monomer. Furthermore, compared with sole OSA starch (OSAS), the electrostatic combination of CS and CSPA conjugate with OSAS could further reduce the interfacial tension, which was conducive to their adsorption at the oil-water interface. The introduction of CS and CSPA conjugate also increased the viscosity of aqueous phase and promoted the formation of gel-like percolating network structure, thereby effectively preventing droplets coalescence and endowing HIPEs with ideal viscoelasticity. More importantly, the contents of lipid hydroperoxide (24.09 μmol/g oil) and malondialdehyde (166.71 nmol/g oil) in HIPEs prepared by OSAS-CS-CSPA complexes were lower than those stabilized by OSAS, OSAS-CS and OSAS-CSPA complexes during accelerated storage. In addition, HIPEs prepared by OSAS-CS-CSPA complexes showed stronger protection capacity on curcumin against ultraviolet irradiation and natural light degradation. This study will provide useful information and technical reference for the fabrication of antioxidant polysaccharide-based HIPEs delivery vehicles.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Xu H, Fu X, Kong H, Chen F, Chang X, Ding Z, Wang R, Shan Y, Ding S. Ultrasonication significantly enhances grafting efficiency of chitosan-ferulic acid conjugate and improves its film properties under Fenton system. Food Res Int 2023; 164:112327. [PMID: 36737920 DOI: 10.1016/j.foodres.2022.112327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ultrasonication (US)-assisted Fenton-system (US-Fenton) with different US time was developed for synthesizing chitosan (CS)-ferulic acid (FA) conjugates. The optimal US-Fenton for a suitable time was selected for preparing a film with CS-FA conjugate and its structural, functional, rheological, and physical properties were also investigated. Compared with Fenton-system, US-Fenton enhanced the grafting ratio of the conjugates, which increased firstly and then decreased as US time. The conjugate obtained by US-Fenton for 1 min (FUS1) possessed the highest grafting ratio (121.28 mg FA/g) and its grafting time was also shortened from 12 h to 1 min contrasted with Fenton grafted method. Structural characterization results showed that FA was conjugated on CS via ester and amide bonds with decreased crystallinity. Scanning electron microscopy and molecular weight analysis indicated that the degradation degree of CS-FA conjugates increased with US time. The DPPH and ABTS radical-scavenging activities of FUS1 were the closest to ascorbic acid, and it also showed the best antibacterial effect among the test conjugates. Accordingly, FUS1 was selected to obtain the film for contrasting with CS film. FUS1 film solution exhibited a decreased viscosity. In comparison to CS film, UV transmittance of FUS1 film approached zero, and its moisture, oxygen, and carbon dioxide permeabilities significantly decreased (P < 0.05). Moreover, its water solubility and tensile strength increased by 58.09% and 25.72% than those of CS film, respectively. Therefore, US-Fenton for 1 min could be a promising method for efficiently preparing active food package materials and FUS1 film possessed broad application prospects.
Collapse
Affiliation(s)
- Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zemin Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
6
|
Zhang Q, Shi Y, Tu Z, Hu Y, He C. Emulsion Properties during Microencapsulation of Cannabis Oil Based on Protein and Sucrose Esters as Emulsifiers: Stability and Rheological Behavior. Foods 2022; 11:foods11233923. [PMID: 36496731 PMCID: PMC9735479 DOI: 10.3390/foods11233923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The effects of different emulsifiers, such as soy protein isolate-sucrose ester (SPI-SE) and whey protein isolate-sucrose ester (WPI-SE), on the properties of the emulsion during the microencapsulation of cannabis oil were studied. The influence of SE concentration on the emulsion properties of the two emulsifying systems was analyzed. The results of the adsorption kinetics show that SE can decrease the interfacial tension, particle size and zeta potential of the emulsions. The results of the interfacial protein concentration show that SE could competitively replace the protein at the oil-water interface and change the strength of the interfacial film. The results of the viscoelastic properties show that the emulsion structure of the two emulsion systems results in the maximum value when the concentration of SE is 0.75% (w/v), and the elastic modulus (G') of the emulsion prepared with SPI-SE is high. The viscosity results show that all emulsions show shear-thinning behavior and the curve fits well with the Ostwald-Dewaele model. The addition of SE in the emulsions of the two emulsion systems can effectively stabilize the emulsion and change the composition and strength of the oil-water interface of the emulsion. The cannabis oil microcapsules prepared with protein-SE as an emulsion system exhibit high quality.
Collapse
Affiliation(s)
- Qun Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Correspondence: (Y.S.); (Z.T.)
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (Y.S.); (Z.T.)
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chengyan He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Zhao Q, Fan L, Liu Y, Li J. Fabrication of chitosan-protocatechuic acid conjugates to inhibit lipid oxidation and improve the stability of β-carotene in Pickering emulsions: Effect of molecular weight of chitosan. Int J Biol Macromol 2022; 217:1012-1026. [PMID: 35926669 DOI: 10.1016/j.ijbiomac.2022.07.222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
In this study, chitosan (CS) with different molecular weights was functionalized with protocatechuic acid (PA) by free-radical grafting reaction, and used for the inhibition of lipid oxidation and the enhancement of stability of β-carotene in Pickering emulsions. The order of grafting ratio of PA in CS-PA conjugates was CS400 (400 kDa CS) > CS200 (200 kDa CS) > CS100 (100 kDa CS). UV-vis, FT-IR and 1H NMR spectra proved that PA was covalently bonded to CS through amino and ester linkages. Compared with native CS, three CS-PA conjugates exhibited reduced crystallinity and thermal stability and improved antioxidant activity, with a molecular weight-dependent relationship. Besides, CS-PA-conjugate particles formed by ionic gelling procedure were spherically shaped and homogeneously dispersed, which substantially improved the stability of β-carotene in Pickering emulsions than CS particles under ultraviolet irradiation, natural light exposure and heat treatment, and the retention rates of β-carotene were in the following order: CS200-PA- > CS400-PA- > CS100-PA-conjugate particles. Furthermore, the oxidation stability of Pickering emulsions fabricated by CS-PA-conjugate particles was also higher than that of CS particles. These results will provide valuable information for the application of CS-PA conjugates to protect bioactive components and inhibit lipid oxidation in emulsion systems.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Effect of type of fatty acid attached to chitosan on walnut oil-in-water Pickering emulsion properties. Carbohydr Polym 2022; 291:119566. [DOI: 10.1016/j.carbpol.2022.119566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/02/2023]
|
9
|
Functionalities of Gelatin Modified with 2-Octenyl Succinic Anhydride and Gallic Acid. Foods 2022; 11:foods11091241. [PMID: 35563964 PMCID: PMC9104907 DOI: 10.3390/foods11091241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this research was to modify gelatin (GT) with 2-octenyl succinic anhydride (OA) and gallic acid (GA) and investigate its functionalities. GT modified with OA (GT-OA) has an improved water solubility at room temperature and an enhanced surface activity, foaming capacity, and pH buffering ability. Regarding antioxidant activity, GT-OA grafted with GA to generate the compound GT-OA-GA has shown good antioxidant activity. Particularly, GT-OA-GA surpassed GA in ferrous ion (Fe2+)-chelating activity. With respect to antimicrobial activity, GT-OA-GA could be complexed with zinc ions (Zn2+), and this complex exhibited good antimicrobial activity against Staphylococcus aureus and Escherichia coli (O157:H7). Chemically modified GT has better water solubility at room temperature and more functionalities than unmodified GT. Thus, it can be used as an emulsifier or coating material in food, cosmetic, and pharmaceutical industries pertaining to GT applications.
Collapse
|
10
|
Wang C, Qiu C, Zhan C, McClements DJ, Qin Y, Jiao A, Jin Z, Wang J. Green Preparation of Robust Hydrophobic β-Cyclodextrin/Chitosan Sponges for Efficient Removal of Oil from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14380-14389. [PMID: 34866397 DOI: 10.1021/acs.langmuir.1c02299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A relatively straightforward green method to fabricate robust hydrophobic sponges for effective removal of oil pollutants and other organic contaminants was developed. These sponges were constructed from bio-sources: citronellal and palmitic acid-modified aminoethyl cyclodextrin-sodium phytate-chitosan (ACCTCS). The modified sponge exhibited desirable mechanical properties and strong hydrophobicity with a water contact angle (WCA) of 147.8°. Scanning electron microscopy showed that the ACCTCS sponge had a highly porous structure that was particularly suitable for organic component absorption. The sponge exhibited excellent absorption capacities for n-hexane, trichloromethane, vacuum pump oil, and peanut oil (47.9, 32.3, 32.6, and 32.2 g/g, respectively). The removal rate of oil was more than 80% (>26.2 g/g) after 10 absorption-desorption cycles. The ACCTCS sponge also showed good oil/water and organic components/water separation performance. The bio-source materials, green preparation method, and new absorbed-oil recovery strategy provided a novel pathway to construct multifunctional absorbents for oil/water separation in industrial wastewater.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chen Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01060, United States
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|