1
|
Luangsakul N, Van Ngo T. Sustainable techniques to enhance novel techno-functional properties and modulate starch digestibility of polyphenol-rich red rice flours with varying amylose content. Food Chem 2025; 480:143915. [PMID: 40120300 DOI: 10.1016/j.foodchem.2025.143915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Red rice flours performed modification using sustainable techniques, including ANN (annealing), HMT (heat moisture treatment), US (ultrasound), Pregel (Pregelatinization), WM (wet-microwave treatment), and DM (dry-microwave treatment). Manpo rice flour, which is high in amylose, demonstrated higher peak viscosity compared to flours from medium-high amylose rice (Hommali rice), under the same treatment conditions. The reduction in swelling power observed after ANN and HMT treatment in both varieties corresponds with the pasting behaviors of these flours. All samples exhibited notable shear-thinning properties. Pregel samples exhibited rapid digestion, with the maximum RDS levels reaching 35.4 % for Manpo rice and 37.3 % for Hommali rice. While, the structure of US samples changed, resulting in enhanced polyphenol bioaccessibility and decreased digestion rate. The lowest eGI recorded in US samples was 60.7 for Manpo rice and 61.5 for Hommali rice, with polyphenol bioaccessibility at 180 min measured at 37 % and 28.8 %, respectively. This study documents the impact of sustainable practices on the properties of red rice flours, thereby enhancing its culinary applications for future commercialization.
Collapse
Affiliation(s)
- Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Tai Van Ngo
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
2
|
Huang LJ, Fang MJ, Tao H, Wang HL. Synthesis and characteristics of type 3 resistant waxy corn starch by removal of starch granule surface proteins and heat-moisture treatment. Food Chem 2025; 472:142958. [PMID: 39874702 DOI: 10.1016/j.foodchem.2025.142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
The type 3 resistant waxy corn starch (RS3) was synthesized by removing starch granule surface proteins and subjecting it to heat-moisture treatment at -20°C, 4°C, and 25°C. Upon applying the dual modification, a significant reduction in particle size and in vitro digestion was observed, while the gelatinization enthalpy, relative crystallinity, and resistant starch content increased. Notably, RS3 treated at 4°C demonstrated the lowest digestion rate of 3.00 × 10-4 min-1 among all groups, and its relative crystallinity achieved a peak of 32.65%. Moreover, the gelatinization enthalpy and resistant starch content increased from 0.29 J/g and 77.9% to 0.79 J/g and 83.84%, respectively. These findings indicate that 4°C is the optimal retrogradation temperature for producing dual-modified RS3 with enhanced digestion resistance.
Collapse
Affiliation(s)
- Li-Jiao Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jia Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
3
|
Zhang X, Xing J, Peng R, Zheng Y, Liang Y, Wang J. Effects of postharvest maturation on physiochemical and structural properties of starch from wheat with different gluten strengths. Int J Biol Macromol 2025; 304:140894. [PMID: 39938818 DOI: 10.1016/j.ijbiomac.2025.140894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
This study aimed to explore the effects of postharvest maturation on physiochemical and structural properties of starch from wheat with different gluten strengths. Postharvest maturation resulted in a reduction in content of amylopectin, lipids, and proteins, and an increase in amount of amylose, crystallinity, short-range ordered structures, molecular weight, and the proportion of amylopectin with B3 chains of starch from Yangmai 15 (YM-15). For starch from Fanmai 8 (FM-8) and Xinmai 26 (XM-26), postharvest maturation brought about an increase in content of amylopectin with B3 chains and a reduction in the percentage of amylose and lipid. The ordered structures of starch from FM-8 and XM-26 reduced during storage but increased after 18 weeks of postharvest maturation. Postharvest maturation led to an increase in molecular weight of starch from FM-8, while decreased for XM-26. The results of solubility, swelling power, thermal, pasting, textural, and rheological properties showed that 18 weeks of postharvest maturation enhanced thermostability but inhibited gelling property for YM-15, whereas FM-8 and XM-26 showed the opposite trend for thermostability and gelatinization. These findings provide new insights into understanding the mechanism of wheat quality improvement induced by postharvest maturation.
Collapse
Affiliation(s)
- Xia Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jinjin Xing
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ruifang Peng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ya Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ying Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jinshui Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
4
|
Asiamah E, Nemţanu MR, Braşoveanu M, Geng DH, Wang Y, Wang K, Cheng Y. Unveiling the suitability of C-starch as functional food: A pairwise interaction of lipids and polyphenol components (LIPOP). Carbohydr Polym 2025; 353:123279. [PMID: 39914984 DOI: 10.1016/j.carbpol.2025.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 05/07/2025]
Abstract
C-starch is distinguished by its unique crystalline structure, combining A-type and B-type polymorphs, primarily into CA and CB configurations. This hybrid structure imparts C-starch with intermediate physicochemical and functional properties, bridging the characteristics of purely A-type and B-type starches. These properties depend on the arrangement of these polymorphs within the granule, often outperforming them in certain applications. The high resistant starch content of C-starch contributes to its low digestibility, making it a promising candidate for functional food applications. C-starch can interact with non-starch components, such as lipids and polyphenols, forming both inclusions via the hydrophobic cavity of amylose helix and non-inclusion complexes through the surface of C-starch. These interactions enhance V-crystal formation, stabilize resistant starch, and produce short-chain fatty acids (SCFAs) by gut microflora. Polyphenols exhibit a more pronounced influence than lipids, facilitating the transformation of C-type crystals into V-type crystals, while lipids predominantly contribute to structural stability through hydrophobic interactions. This study highlights the complex relationship between lipids and polyphenols (LIPOP) in modulating C-starch properties. The insights also provide critical guidance for using C-starch in developing innovative functional foods with tailored nutritional and functional benefits. Future research should explore the dynamic interactions within LIPOP systems to optimize the nutritional and functional properties of C-starch in food applications.
Collapse
Affiliation(s)
- Ebenezer Asiamah
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Council for Scientific and Industrial Research- Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Monica R Nemţanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125, Măgurele, Romania
| | - Mirela Braşoveanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125, Măgurele, Romania
| | - Dong-Hui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiming Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kuaitian Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Zhang S, Zhang R, Hu Y, Chen H, Chen W, Zhang M, Liu H, Liu S, Pei J, Gao S. Structural and physicochemical properties of pea starch dual-treated with dry heating and galactomannans. Int J Biol Macromol 2025; 294:139374. [PMID: 39743102 DOI: 10.1016/j.ijbiomac.2024.139374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The research on the combination of starch and galactomannans (GM) with dry heat treatment (DHT) is currently insufficient, which hinders the starch application. In this study, the impacts of dry heat treatment and GM complex on the structural, gelatinization properties, and digestibility of pea starch (PS) were investigated. The gelatinization viscosity and gel hardness of dry heated-PS were decreased. Moreover, the relative crystallinity of PS was improved when individually treated by dry heating and GM complex, resulting in the decline of digestibility. Besides, the long molecular chains (DP ≥ 37) proportion and the semi-crystalline lamellae thickness of the PS-GM-DHT complex were increased, which was relevant to the ratio of galactose/mannose residues in galactomannan. In particular, PS was more prone to complex with locust bean gum following dry heat treatment, which has the highest mannose ratio. The present study provided the fundamental information to promote the starch application further.
Collapse
Affiliation(s)
- Si Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Rui Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yijing Hu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Shuang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.
| | - Shanshan Gao
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
6
|
Sun Y, Xiao D, Zheng X, Yang Y, Zheng L, Ai B, Sheng Z. Integrative approach to modifying banana starch: The role of physical treatment and polyphenol enrichment on physicochemical and digestive characteristics. Food Res Int 2025; 202:115676. [PMID: 39967145 DOI: 10.1016/j.foodres.2025.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/06/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
This study assessed the effects of three physical methods-dielectric barrier discharge (DBD) plasma, ultrasound, and heat-moisture treatment-coupled with resveratrol enrichment, on the physicochemical and digestive properties of banana starch. The findings indicated that each physical treatment enhanced the complex index between starch and resveratrol. Scanning electron microscopy and X-ray diffraction analyses revealed that the inherent A-type crystallinity of the starch remained unchanged after modifications. Heat-moisture treatment induced the most profound alterations in the long-range and short-range order. While DBD plasma and ultrasound did not affect the granular morphology, heat-moisture treatment caused the most significant disruption. Furthermore, DBD plasma and ultrasound treatments significantly enhanced the solubility, gelatinization temperature, and viscoelastic properties of banana starch, while having a negligible effect on its digestibility. After heat-moisture treatment, banana starch exhibited significantly higher gelatinization temperatures (To = 72.13 °C, Tp = 82.56 °C, Tc = 83.69 °C) and a digestion rate of 82.37 %, compared to those observed with DBD plasma and ultrasound treatments, despite reduced solubility and viscoelasticity. Additionally, all three treatments improved the oil absorption capacity of the starch. The integration of resveratrol not only consolidated starch structure but also augmented its thermal stability and resistant starch content. These findings provide empirical support for modifying banana starch and expanding its application in food industry.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China; College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
7
|
Zhang X, Wang C, Zhu Y, Sang L, Zhao Q, Shen Q. Mechanistic understanding of changes in physicochemical properties of different rice starches under high hydrostatic pressure treatment based on molecular and supramolecular structures. Food Chem 2025; 463:141421. [PMID: 39362093 DOI: 10.1016/j.foodchem.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The molecular and supramolecular structures of japonica and waxy rice starches under high hydrostatic pressure treatment (450 MPa) were studied and the changes in physicochemical properties were analyzed based on these structures. The molecular structures of japonica and waxy rice starch cause differences in the lamellar structure and physicochemical properties. The thickness of amorphous lamella of japonica rice starch increased at 5 min (2.95 nm) followed by a gradual collapse of lamellar structure. Whereas the thickness of crystalline lamellae of waxy rice starch increased at 15 min (5.92 nm) and the lamellae collapsed suddenly at 20 min. The pasting, rheological and textural characteristics of both starches increased significantly within 10 to 15 min. The decreasing onset temperature and enthalpy of high hydrostatic pressure-treated starches indicated easier gelatinization. High hydrostatic pressure-treatment offers potential for developing starch-based products with low swelling capacity, easy gelatinization, high viscosity and hardness.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| |
Collapse
|
8
|
Zhang S, Wu W, Zhu J, Wu J, Gan Z, Deng H, Zhang Y, Liao L. Multi-scale structural evolution during simulated gelatinization process of sweet potato starch by heat-moisture treatment. Food Chem X 2025; 25:102123. [PMID: 39830000 PMCID: PMC11741091 DOI: 10.1016/j.fochx.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The changes in properties and structures of raw sweet potato starch (RAW-SPS) and heat-moisture treatment (HMT) sweet potato starch (HMT-SPS) during gelatinization process (S1-S6) was investigated to elucidate the improvement effect of HMT on SPS. It was found that SPS exhibited the characteristics of pseudoplastic fluids, characterized by shear thinning and thixotropy, belonged to the C-type starch crystal. The gelatinization temperature of SPS was increased to 82.55 °C by HMT. HMT-SPS had better viscoelasticity in S3-S6. The particle size was smaller than that of RAW-SPS during the gelatinization process. The starch paste of S2 was gelatinized by heating at 95 °C, and the original crystalline structure of the starch was destroyed, where layered structure formed by recrystallization was observed. HMT-SPS showed a clear polarization cross, while disappeared after S2. HMT also improved the ordering degree. The results explained the mechanism of changes in HMT modified starch during the gelatinization process.
Collapse
Affiliation(s)
- Sijie Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jihe Zhu
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Junling Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zengpeng Gan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Houqin Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| |
Collapse
|
9
|
Cao R, Zhang Z, Wang X, Xia C, Cheng Y, Wang Z, Qiu J. Delayed Effect of Superheated Steam Treatment on Starch Retrogradation of Rice Cake After Storage by Modifying Starch Chain-Length Distribution in Rice Flour. Molecules 2024; 29:5253. [PMID: 39598643 PMCID: PMC11596960 DOI: 10.3390/molecules29225253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigated the effects of superheated steam (SS) treatment on the physicochemical properties of rice flour and the subsequent impact on rice cake quality. The SS-180 resulted in higher final viscosity and significantly increased pasting time and the temperature of rice flour (p < 0.05). A significant enhancement in the water holding capacity of rice flour (p < 0.05) was due to the rice starch aggregated in this SS process. SS treatment also led to an increase in the proportion of short chains of amylopectin in rice flour from 30.40% to 37.59%, while a decrease in long chains retarded retrogradation and improved rice cake texture. The hardness of the SS-treated rice cake was lower than that of the untreated one, but the specific volume was increased significantly (p < 0.05). After 7 days of storage, rice cake with SS-180 treatment showed the lowest hardness, namely, the lowest retrograded process. These findings underscore the potential of SS treatment to enhance the physicochemical properties of rice flour and improve rice cake quality.
Collapse
Affiliation(s)
- Ruge Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.C.); (Z.Z.); (X.W.); (Z.W.)
| | - Zixiu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.C.); (Z.Z.); (X.W.); (Z.W.)
| | - Xishuang Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.C.); (Z.Z.); (X.W.); (Z.W.)
| | - Chen Xia
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.X.); (Y.C.)
| | - Yongqiang Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.X.); (Y.C.)
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (R.C.); (Z.Z.); (X.W.); (Z.W.)
| | - Ju Qiu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.X.); (Y.C.)
| |
Collapse
|
10
|
Zhang X, Wang C, Sang L, Liu Z, Zhao L, Zhao Q, Shen Q. Investigation of starch hierarchical structure in relation to physicochemical properties and digestive behavior under different high hydrostatic pressure treatment time. Int J Biol Macromol 2024; 279:135208. [PMID: 39218176 DOI: 10.1016/j.ijbiomac.2024.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Changes and causal relationships in the hierarchical structure, thermal, pasting and rheological properties, as well as the digestive behavior of starch under different high hydrostatic pressure (HHP) treatment time were investigated. At 5 min, the thickness of amorphous lamellae increased (2.76 nm) and the content of B2 and B3 chains in the amorphous lamellae decreased significantly (10.78 % and 9.08 %). As the treatment time increased, the crystalline lamellae swelled and tightly arranged double helices located in the crystalline lamellae were disturbed, resulting in a decrease in the content of double helices (12.16 %) and relative crystallinity (16.96 %). Helix dissociation, crystal disruption, lamellar collapse and granule deformation were observed at 20 min. These structural changes were closely linked to variations in the physicochemical behaviors. The thermal parameters decreased gradually, accompanied by a decrease in double helix stability. The swollen crystalline lamellae provided more space for molecular stretching, thus enhancing the pasting characteristics. Regarding the digestive behavior, the swollen amorphous lamellae facilitated the invention of enzyme molecules to hydrolyze the starch at 5 min. The digestion rate coefficient and rapidly digestible starch content increased significantly until 15 min, which demonstrated that starch was more easily digested while retaining its intact granular form.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Zhenyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| |
Collapse
|
11
|
Obadi M, Xu B. A review of the effects of physical processing techniques on the characteristics of legume starches and their application in low-glycemic index foods. Int J Biol Macromol 2024; 279:135124. [PMID: 39208910 DOI: 10.1016/j.ijbiomac.2024.135124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Physical processing techniques significantly influence the characteristics of legume starch, consequently affecting the potential applications of legume-based products. This review comprehensively examines the impact of various physical processing techniques on legume starch properties, including structure, granule morphology, gelatinization, pasting properties, solubility, and in vitro digestibility. Furthermore, it evaluates the implications of these processing methods for utilizing legumes in developing low-glycemic index (GI) foods. Notably, certain physical processing methods, such as heat-moisture treatment, ultrahigh-pressure processing, dry heat treatment, and gamma irradiation, under specific conditions, enhance the resistant starch or slowly digestible starch fractions in legume starches. This enhancement is particularly advantageous for producing low-GI foods. Conversely, techniques like annealing, extrusion, ultrasound, and germination increase starch digestibility, which is less favorable for low-GI food applications. This review also provides an up-to-date overview of the use of diverse preprocessed legume products in low-GI food production. The novelty of this review lies in its detailed comparative analysis of physical processing methods and their specific effects on legume starch digestibility, which has not been extensively covered in existing literature. The comprehensive insights presented herein will benefit the legume industry by informing effective strategies for converting legume starch into valuable low-GI products.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Chandak A, Dhull SB, Chawla P, Goksen G, Rose PK, Al Obaid S, Ansari MJ. Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility. Int J Biol Macromol 2024; 278:135032. [PMID: 39182880 DOI: 10.1016/j.ijbiomac.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Maleki S, Aarabi A, Far FA, Dizaji HZ. Heat moisture treatment and ultrasound-induced hydrothermal wheat starch modification: Techno-functional, microstructural and quality 3D printed characteristics. Int J Biol Macromol 2024; 276:133992. [PMID: 39032880 DOI: 10.1016/j.ijbiomac.2024.133992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In this study, the effect of hydrothermal process, ultrasound and combined freezing-ultrasound process on the physical and structural characteristics of wheat starch (Triticum aestivum) was investigated. Two heat-moisture treatments for 2 h (HMT2) and 4 h (HMT4), high-intensity, high-frequency ultrasound under two treatment times (10 to 20 min) (UT10 and UT20) as pre-treatment and sonication after freezing as post-treatment (FUT) on wheat starch suspension was applied. The modifications of starch crystallinity, chemical bonds of starch treated, morphology, thermal, swelling, pasting, and physicochemical characteristics were evaluated. Finally, the starches treated under these conditions were used as ink for a 3D printer, and the characteristics of the printed product were evaluated. The results demonstrate that heat-moisture modified starch increased swelling and size of granules and lowered syneresis values. Sonication promoted molecular depolymerization and reduction of starch swelling and crystallinity. Combined treatment (Sonication and freezing) showed higher peak apparent viscosity during gelatinization and pasting, and the FUT starch-based hydrogels showed the best printability (better ability to stack layers on top of each other and build the desired 3D shape), indicating better reproducibility of this ink. These results showed that FUT is a suitable process for improving the synergy and properties of wheat starch-based hydrogels, which are suitable as inks for use in 3D printers.
Collapse
Affiliation(s)
- Samaneh Maleki
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Aazam Aarabi
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Farhad Azimi Far
- Department of Biomedical Engineering, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassan Zaki Dizaji
- Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
14
|
Wang J, Liu W, Sui J, Cui B, Yuan C, Li Y, Liu G, Li Z. Effect of ultrasound/CaCl 2 co-treatment on the microstructure, gelatinization, and film-forming properties of high amylose corn starch. Int J Biol Macromol 2024; 276:134067. [PMID: 39038579 DOI: 10.1016/j.ijbiomac.2024.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
The effect of ultrasound/CaCl2 co-treatment on aggregation structure, thermal stability, rheological, and film properties of high amylose corn starch (HACS) was investigated. The scanning electron microscopy (SEM) images revealed the number of starch fragments and malformed starch granules increased after co-treatment. The differential scanning calorimetry (DSC) results showed the co-treated HACS got a lower gelatinization temperature (92.65 ± 0.495 °C) and enthalpy values (ΔH, 4.14 ± 0.192 J/g). The optical microscope images indicated that lesser Maltase crosses were observed in co-treated HACS. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated ultrasound influenced the compactness of amorphous zone and CaCl2 damaged the crystalline region of HACS granules. Additionally, the rheology properties of HACS dispersion demonstrated the apparent viscosity of co-treated dispersion increased as the ultrasound time prolonged. The mechanical strength and structural compactness of HACS films were improved after ultrasound treatment. The mechanism of ultrasound/CaCl2 co-treatment improved the gelatinization and film-forming ability of HACS was that (i) ultrasound wave loosened the HACS granules shell, promoted the treatment of CaCl2 on HACS granules, and (ii) ultrasound wave improved the uniform distribution of HACS dispersion, increased the interaction between CaCl2 and starch chains during the process of film-forming.
Collapse
Affiliation(s)
- Jialin Wang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jie Sui
- Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yuhang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhao Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
15
|
Keeratiburana T, Siangwengwang N, Somphunga W, Fu T, Blennow A. Ultrasound-assisted annealing treatment to improve physicochemical and digestive properties of banana flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6640-6648. [PMID: 38523359 DOI: 10.1002/jsfa.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Banana flour can provide a solution to people with gluten intolerance, as it is gluten-free. Native banana flour may have limited functionality in certain applications. In this study, banana flour was modified by ultrasonic (US) and annealing (ANN) treatments at four incubation time spans, namely 12, 24, 36 and 72 h, separately or combined sequentially (US-ANN) to enhance the physicochemical and digestive properties. RESULTS US led to exposed granular surfaces and damaged non-starch components. Both treatments, at extended incubation time, increased crystallinity, resulting in a narrower starch gelatinization temperature range. The swelling power was significantly lower for ANN and US-ANN compared to US alone, providing a delay of gelatinization temperature. However, none of the treatments affected the gelatinization enthalpy. Furthermore, US increased peak viscosity, breakdown, final viscosity and setback whereas the opposite results were obtained for ANN and US-ANN. Additionally, US prior to ANN significantly increased the resistant starch (RS) content for annealing times over 24 h, especially for the US-ANN treatment for 72 h, which provided the highest RS content (49.3%) compared to ANN treatment for 72 h (44.0%) and native flour (36.3%). CONCLUSIONS US prior to ANN treatment offers an alternative method to improve the functional and digestive properties of banana flour, extending the range of applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thewika Keeratiburana
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nattika Siangwengwang
- Department of Food Innovation and Processing, Faculty of Science, Buriram Rajabhat University, Buriram, Thailand
| | - Wipha Somphunga
- Department of Food Innovation and Processing, Faculty of Science, Buriram Rajabhat University, Buriram, Thailand
| | - Tian Fu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Su Y, Chen Y, Sun M, Ren A, Li J, Liu Z, Zheng T. Tailoring the physicochemical properties of starch: impact of integrated ultrasonic and ethanol pretreatment on the oil uptake of infrared fried ginkgo seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5896-5906. [PMID: 38477402 DOI: 10.1002/jsfa.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The structural changes of starch would have a more crucial impact on oil absorption and quality changes in starch-rich fruits and vegetables during frying process with enhanced heat transfer (such as infrared frying). In the present study, the influence of integrated ultrasonic and ethanol (US + ethanol) pretreatment on oil uptake in infrared fried (IF) ginkgo seeds was evaluated regarding modifications in the physicochemical properties of starch. The pretreatment was performed with ultrasonic (40 kHz, 300 W) and ethanol osmotic (95%, v/v) treatment individually or integrated for 40 min. RESULTS The mass transfer in the pretreatment was facilitated by combined ultrasound and ethanol. The swelling power, solubility, and gelatinization degree of starch was significantly increased. Low-frequency-NMR curves and images revealed that the bound water fraction in ginkgo seeds was increased and the water distribution was homogenized. The results of Fourier transform-infrared spectrum and differential scanning calorimeter revealed that the crystalline regions of starch were reduced and the thermal enthalpy was decreased after US + ethanol pretreatment. The total, surface and structural oil content in IF ginkgo seeds with US + ethanol pretreatment was reduced by 29.10%, 34.52% and 29.73%, respectively. The US + ethanol pretreatment led to a thinner crust layer with increased porosity and smaller-sized pores in the IF ginkgo seeds as observed by stereo microscopy and scanning electron microscopy. CONCLUSION The changes in structural and physicochemical properties of starch by combined ultrasound and ethanol affect the crust ratio and pore characteristics in fried high-starch fruits and vegetables, thereby reducing oil absorption. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Menglin Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Aiqing Ren
- Institute of Food Research, Hezhou University, Hezhou, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhenbin Liu
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Mhaske P, Farahnaky A, Majzoobi M. Advancements in Pulse Starches: Exploring Non-Thermal Modification Methods. Foods 2024; 13:2493. [PMID: 39200420 PMCID: PMC11353720 DOI: 10.3390/foods13162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The surge in the global demand for plant-based proteins has catapulted pulse protein into the spotlight. To ensure economic viability and sustainable production, it is crucial to utilize pulse starch, a by-product of plant protein fractionation. Despite the increasing interest in pulse starches, there is a notable gap in knowledge regarding their modifications and applications compared to cereal and tuber starches. Non-thermal techniques such as electron beam radiation, static high pressure, microfluidization, and cold plasma are emerging as innovative methods for starch modification. These techniques offer significant advantages, including enhanced safety, environmental sustainability, and the development of unique functional properties unattainable through conventional methods. However, challenges such as equipment availability, high costs, and energy consumption hinder their widespread adoption. In light of the growing emphasis on "clean and green labelling" and effective "waste management" in food production, evaluating non-thermal techniques for pulse starch modification is critical. This review aims to thoroughly assess these non-thermal techniques and their combinations, offering valuable insights for researchers and the food industry. By maximizing the potential of pulse starches in innovative food applications, it provides a comprehensive guide for effective non-thermal methods that add value and align with sustainable practices.
Collapse
Affiliation(s)
- Pranita Mhaske
- AFB International, 3 Research Park Drive, St. Charles, MO 63304, USA;
| | - Asgar Farahnaky
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| |
Collapse
|
18
|
Vela AJ, Villanueva M, Ronda F. Ultrasonication: An Efficient Alternative for the Physical Modification of Starches, Flours and Grains. Foods 2024; 13:2325. [PMID: 39123518 PMCID: PMC11311953 DOI: 10.3390/foods13152325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Ultrasonic (USC) treatments have been applied to starches, flours and grains to modify their physicochemical properties and improve their industrial applicability. The extent of the modification caused by USC treatment depends on the treatment conditions and the natural characteristics of the treated matter. Cavitation leads to structural damage and fragmentation and partial depolymerization of starch components. The amorphous regions are more susceptible to being disrupted by ultrasonication, while the crystalline regions require extended USC exposure to be affected. The increased surface area in USC-treated samples has a higher interaction with water, resulting in modification of the swelling power, solubility, apparent viscosity, pasting properties and gel rheological and textural properties. Starch digestibility has been reported to be modified by ultrasonication to different extents depending on the power applied. The most important treatment variables leading to more pronounced modifications in USC treatments are the botanical origin of the treated matter, USC power, time, concentration and temperature. The interaction between these factors also has a significant impact on the damage caused by the treatment. The molecular rearrangement and destruction of starch structures occur simultaneously during the USC treatment and the final properties of the modified matrix will depend on the array of treatment parameters. This review summarizes the known effects of ultrasonic treatments in modifying starches, flours and grains.
Collapse
Affiliation(s)
- Antonio J. Vela
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (A.J.V.); (M.V.)
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Marina Villanueva
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (A.J.V.); (M.V.)
- Research Institute on Bioeconomy-BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (A.J.V.); (M.V.)
- Research Institute on Bioeconomy-BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
19
|
Su Q, Cai S, Duan Q, Huang W, Huang Y, Chen P, Xie F. Combined effect of heat moisture and ultrasound treatment on the physicochemical, thermal and structural properties of new variety of purple rice starch. Int J Biol Macromol 2024; 261:129748. [PMID: 38281537 DOI: 10.1016/j.ijbiomac.2024.129748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The advantages of physically modifying starch are evident: minimal environmental impact, no by-products, and straightforward control. The impact of dual modification on starch properties is contingent upon modification conditions and starch type. Herein, we subjected purple rice starch (PRS) to heat-moisture treatment (HMT, 110 °C, 4 h) with varying moisture content, ultrasound treatment (UT, 50 Hz, 30 min) with different ultrasonic power, and a combination of HMT and UT. Our findings reveal that UT following HMT dispersed starch granules initially aggregated by HMT and resulted in a rougher granule surface. Rheological analysis showcased a synergistic effect of HMT and UT, enhancing the fluidity of PRS and reinforcing its resistance to deformation in paste form. The absorbance ratio R1047/1015 indicates that increased moisture content during HMT and high ultrasound power for UT reduced the short-range order degree (1.69). However, the combined HMT-UT exhibited an increased R1047/1015 (1.38-1.64) compared to HMT alone (1.29-1.45), likely due to short-chain rearrangement. Notably, the A-type structure of PRS remained unaltered, but overall crystallinity significantly decreased (23.01 %-28.56 %), consistent with DSC results. In summary, physical modifications exerted significant effects on PRS, shedding light on the mechanisms governing the transformation of structural properties during HMT-UT.
Collapse
Affiliation(s)
- Qiqi Su
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Cai
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingwei Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
21
|
Xiao L, Yu Y, Yang X, Wei Z, Han L. Physicochemical properties of ultrasound-pretreated pea starch and its inclusion complexes with lauric acid. Food Chem X 2023; 20:100879. [PMID: 38144720 PMCID: PMC10740033 DOI: 10.1016/j.fochx.2023.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 12/26/2023] Open
Abstract
Ultrasound is a promising green technology for modifying starch. The influence of ultrasound pretreatment (UPT) at diverse temperatures on the morphology and molecular structure of pea starch and its ability to form inclusion complexes with lipids were investigated. After UPT at each temperature, the starch granules retained an unchanged crystalline structure but exhibited notable changes in short-range molecular order and molecular structure. In comparison with the samples treated at 0 and 20 °C, pea starch subjected to UPT at 40 °C had a significantly (P ≤ 0.05) higher complexing index with lauric acid (LA) and the starch-LA inclusion complex exhibited a higher enthalpy change, relative crystallinity, and resistant starch content. These differences were attributed to the higher temperature causing changes in the disruption points of starch chains and an enlargement in the molecular weight of linear chains. These results may promote the utilization of ultrasound for effective starch modification.
Collapse
Affiliation(s)
- Liuyang Xiao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People’s Republic of China
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People’s Republic of China
| | - Xiaofan Yang
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People’s Republic of China
| | - Zhaojun Wei
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People’s Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People’s Republic of China
| |
Collapse
|
22
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
23
|
Kalla-Bertholdt AM, Baier AK, Rauh C. Potential of Modification of Techno-Functional Properties and Structural Characteristics of Citrus, Apple, Oat, and Pea Dietary Fiber by High-Intensity Ultrasound. Foods 2023; 12:3663. [PMID: 37835316 PMCID: PMC10572798 DOI: 10.3390/foods12193663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Plant fibers are rich in dietary fiber and micronutrients but often exhibit poor functionality. Ultrasonication can affect the particle size of plant fiber, thereby influencing other techno-functional properties. Therefore, this study aimed to investigate the effects of high-intensity ultrasound on citrus, apple, oat, and pea fiber. Initially, solutions containing 1 wt% of plant fiber were homogenized using ultrasonication (amplitude 116 µm, t = 150 s, energy density = 225 kJ/L, P¯ = 325 W). Due to cavitation effects induced by ultrasound, differences in particle size and a shift in the ratio of insoluble and alcohol-insoluble fractions for dietary fiber were observed. Additionally, viscosities for citrus and apple fiber increased from 1.4 Pa·s to 84.4 Pa·s and from 1.34 Pa·s to 31.7 Pa·s, respectively, at shear rates of 100 1s. This was attributed to observed differences in the microstructure. Freeze-dried samples of purified citrus and apple fiber revealed thin and nearly transparent layers, possibly contributing to enhanced water binding capacity and, therefore, increased viscosity. Water binding capacity for citrus fiber increased from 18.2 g/g to 41.8 g/g, and a 40% increase was observed for apple fiber. Finally, ultrasound demonstrated itself be an effective technology for modifying the techno-functional properties of plant fiber, such as water binding capacity.
Collapse
Affiliation(s)
- Ann-Marie Kalla-Bertholdt
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Koenigin-Luise-Str. 22, 14195 Berlin, Germany
| | | | | |
Collapse
|
24
|
Zhang L, Apea-Bah FB, Chen X, Hornung PS, Malunga LN, Beta T. The physicochemical and structural properties and in vitro digestibility of pea starch isolated from flour ground by milling and air classification. Food Chem 2023; 419:136086. [PMID: 37030213 DOI: 10.1016/j.foodchem.2023.136086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The fine, coarse and parent starches were isolated from pea flour by milling and air-classification. Their structural, thermal, physicochemical properties and in vitro digestibility were investigated. Particle Size Distribution showed the fine starch with the smallest unimodal distribution (18.33 and 19.02 μm) displayed higher degree of short-range molecular order and lower number of double helix structure. Scanning Electron Microscopy showed the morphology of the coarse starch granules as uniform in size and lacking protein particles on its smooth surface. Differential Scanning Calorimetry revealed the coarse starch had higher enthalpy changes while Rapid Visco Analysis showed higher peak, trough, and breakdown viscosities for the fine starch. In vitro digestibility featured the fine starch containing lower fast digesting starch contents, but with higher resistant starch content, indicating its resistance to enzymatic hydrolysis. The results could provide theoretical support for application of pea starch in functional foods and the manufacture of emerging starch products.
Collapse
Affiliation(s)
- Lixia Zhang
- Research Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Franklin B Apea-Bah
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xin Chen
- Economic Crops Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Polyanna Silveira Hornung
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lovemore Nkhata Malunga
- Agriculture and Agri-Food Canada / Government of Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
25
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
26
|
Zhang X, Tang N, Jia X, Geng D, Cheng Y. Multi-Scale Comparison of Physicochemical Properties, Refined Structures, and Gel Characteristics of a Novel Native Wild Pea Starch with Commercial Pea and Mung Bean Starch. Foods 2023; 12:2513. [PMID: 37444251 DOI: 10.3390/foods12132513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In the present study, the morphology, refined structure, thermal properties, and dynamic rheological, texture, and digestive properties of common vetch starch, a potential new type of legume starch, were systematically investigated, and compared with commercially available pea and mung bean starch. The results showed that the composition and chemical structure of common vetch starch were similar to the pea and mung bean starch. However, the amylose content (35.69), A-chain proportion (37.62), and relative crystallinity (34.16) of common vetch starch were higher, and the particle size and molecular weight (44,042 kDa) were larger. The value of pasting properties and enthalpy change (ΔH) of gelatinization of common vetch starch was lower and higher than mung bean and pea starch, respectively, and a lower swelling power and pasting index indicate that common vetch starch had higher hot-paste and cold-paste stability. In addition, common vetch starch gel exhibited good rheology, cohesiveness, and anti-digestive properties. These results provide new insights into the broader application of common vetch starch.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Donghui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
27
|
Han L, Huang J, Yu Y, Thakur K, Wei Z, Xiao L, Yang X. The alterations in granule, shell, blocklets, and molecular structure of pea starch induced by ultrasound. Int J Biol Macromol 2023; 240:124319. [PMID: 37019203 DOI: 10.1016/j.ijbiomac.2023.124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Understanding the alterations to starch multi-scale structure induced by ultrasound treatment can help in determining the effective application of ultrasound in functional-starch preparation. This study aimed to comprehensively characterize and understand the morphological, shell, lamellae, and molecular structures of pea starch granules treated by ultrasound under different temperatures. Scanning electron microscopy and X-ray diffraction analyses showed that UT (ultrasound treatment) did not change C-type of crystalline, but caused a pitted surface and endowed a looser structure and higher enzyme susceptibility as the temperature increased above 35 °C for pea starch granules. Fourier transform infrared spectroscopy and small-angle X-ray scattering analyses revealed that UT reduced the short-range ordering and increased the thickness of semi-crystalline and amorphous lamellae by inducing starch chain depolymerization, which was manifested by molecule weight and chain length distribution analysis. The sample ultrasound-treated at 45 °C had the higher proportion of B2 chains compared with the other ultrasound-treated samples because the higher ultrasonic temperature altered the disruption sites of starch chains.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Jipeng Huang
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhaojun Wei
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Liuyang Xiao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Xiaofan Yang
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| |
Collapse
|
28
|
Yang N, Gao W, Zou F, Tao H, Guo L, Cui B, Lu L, Fang Y, Liu P, Wu Z. The relationship between molecular structure and film-forming properties of thermoplastic starches from different botanical sources. Int J Biol Macromol 2023; 230:123114. [PMID: 36599387 DOI: 10.1016/j.ijbiomac.2022.123114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
To illustrate the correlations between molecular structures and the film-forming properties of thermoplastic starch from various botanical sources, starches from cereal, tuber and legume were modified by thermoplastic extrusion and the corresponding thermoplastic starch films were prepared including thermoplastic corn starch (TCS), thermoplastic rice starch (TRS), thermoplastic sweet potato starch (TSPS), thermoplastic cassava starch (TCAS) and thermoplastic pea starch (TPES) films. TPES film displayed a higher tensile strength (6.28 MPa) and stronger water resistance, such as lower water solubility (15.70 %), water absorption (42.35 %), and water vapor permeability (0.285 g·mm·h-1·m-2·kPa-1) due to higher contents of amylose and B1 chains. TCAS showed a smoother and more amorphous film due to higher amylopectin content, resulting higher elongation at break and larger opacity. TCS film was the most transparent due to a compacter network and more ordered crystallinity structure, which was suit for the packaging of fresh vegetables and aquatic products, whereas TCAS film was the opaquest, which protected package foods from light such as meat products, etc. The outcome would provide an innovative theory to regulate accurately the functional properties of thermoplastic starch films for different food needs.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
29
|
Effects of morphology and rheology of starch nanoparticles prepared from various coarse cereals on emulsifying ability. Carbohydr Polym 2022; 298:120137. [DOI: 10.1016/j.carbpol.2022.120137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
|
30
|
Sun Y, Yang Y, Zheng L, Zheng X, Xiao D, Wang S, Zhang Z, Ai B, Sheng Z. Physicochemical, Structural, and Digestive Properties of Banana Starch Modified by Ultrasound and Resveratrol Treatments. Foods 2022; 11:foods11223741. [PMID: 36429331 PMCID: PMC9689167 DOI: 10.3390/foods11223741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ultrasonic treatment combined with resveratrol modification was used to improve banana starch's solubility, thermal stability, and digestion resistance. The solubility and freeze-thaw stability of the modified starch complex significantly increased. The oil-absorption capacity increased by 20.52%, and the gelatinization temperatures increased from 64.10-73.92 °C to 70.77-75.83 °C. The storage modulus (G') and loss modulus (G″) increased after ultrasound and resveratrol treatment, and the proportion of viscosity was increased after composition with resveratrol. Additionally, the in vitro digestibility decreased from 44.12% to 40.25%. The modified complexes had release-control ability for resveratrol. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy demonstrated that complex structures became more compact and organized, whereas crystalline patterns were unchanged. Scanning electron microscopy (SEM) showed that the resveratrol modification caused physical change on the granular surface by creating pores and fissures. The findings can help develop antioxidant functional foods using banana starch.
Collapse
Affiliation(s)
- Ying Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
- Correspondence:
| |
Collapse
|
31
|
Tian Y, Qu J, Zhou Q, Ding L, Cui Y, Blennow A, Zhong Y, Liu X. High pressure/temperature pasting and gelling of starch related to multilevel structure-analyzed with RVA 4800. Carbohydr Polym 2022; 295:119858. [DOI: 10.1016/j.carbpol.2022.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
|
32
|
Zhang X, Mi T, Gao W, Wu Z, Yuan C, Cui B, Dai Y, Liu P. Ultrasonication effects on physicochemical properties of starch-lipid complex. Food Chem 2022; 388:133054. [PMID: 35483292 DOI: 10.1016/j.foodchem.2022.133054] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
The starch-lipid complex between the pea starch (PSt) and glycerol monolaurate (GM) was prepared using ultrasound with different amplitudes, durations and application sequences. Fourier-transform infrared and nuclear magnetic resonance spectra showed the formation of amylose-lipid complex between PSt and GM in the ultrasonic field. Stronger diffraction intensities were observed in samples treated by ultrasonication, whereas the thermogravimetric analysis indicated that the thermal stability of starch was improved by the formation of the V-type inclusion complexes. An ultrasound pre-treatment prior to the addition of a guest molecule (UC) was more favorable to induce the formation of an amylose-lipid complexes than ultrasound treatment after PSt was incorporated with GM (CU). The UC-treated samples showed stronger diffraction intensities, higher melting enthalpy values and enzyme-resistant than that of CU-treated PSt-GM complexes.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong 252000, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yangyong Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
33
|
Deng C, Melnyk O, Marenkova T, Luo Y. Modification in Physicochemical, Structural and Digestive Properties of Potato Starch During Heat-Moisture Treatment Combined with Microwave Pre- and Post-Treatment. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Wang N, Shi N, Fei H, Liu Y, Zhang Y, Li Z, Ruan C, Zhang D. Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. ULTRASONICS SONOCHEMISTRY 2022; 89:106136. [PMID: 36055014 PMCID: PMC9445431 DOI: 10.1016/j.ultsonch.2022.106136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 05/09/2023]
Abstract
As a new and clean extraction technology, ultrasonic extraction has been demonstrated with great potential in the preparation of modified starch. In order to increase its added value, it is necessary to modify pea starch to enlarge its application. In this study, the efficiency of combining ultrasonic with alkali in the extraction of pea starch was evaluated and compared to conventional alkali extraction. Ultrasonic-assisted alkali extraction conditions were optimized using single-factor experiments and response surface methodology. The results revealed that maximum yield of pea starch (54.43 %) was achieved using ultrasound-assisted alkali extraction under the following conditions: sodium hydroxide solution with a concentration of 0.33 %, solid/alkali solution ratio of 1:6 (w/v), ultrasonic power of 240 W, temperature of 42 °C, and extraction time of 22 min. The ultrasound-assisted alkali extraction yielded 13.72 % greater pea starch than conventional alkali extraction. On the other hand, morphological, structural, and physicochemical properties of the obtained starch isolates were evaluated. The ultrasound-assisted alkali extraction resulted in pea starch with greater amylose content, water-solubility, swelling power, and viscosity compared with conventional alkali extraction. Furthermore, ultrasonication influenced the morphological properties of pea starch granules, while the molecular structure and crystal type were not affected. Moreover, the ultrasonic-assisted extraction produced starch with a slightly greater resistant starch content. Therefore, ultrasonic-assisted extraction can be suggested as a potential method for extracting pea starch with improved functional properties.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Ningning Shi
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Hongli Fei
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Yuan Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Yaqi Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China
| | - Changqing Ruan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China.
| |
Collapse
|
35
|
Umaña M, Calahorro M, Eim V, Rosselló C, Simal S. Measurement of microstructural changes promoted by ultrasound application on plant materials with different porosity. ULTRASONICS SONOCHEMISTRY 2022; 88:106087. [PMID: 35785623 PMCID: PMC9256647 DOI: 10.1016/j.ultsonch.2022.106087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 05/26/2023]
Abstract
This research investigated the effects of ultrasound application (192 ± 6 W/L) on the microstructure of vegetables/fruits with different porosities, cell sizes and patterns (eggplants, beetroots, and apples), submitted to an immersion treatment in different liquids: distilled water, citric acid (1% w/v), and the vegetable/fruit juice, at 25 °C during 5 min. The ultrasound application did not significantly (p > 0.05) affect the size of the cells of the most porous material (eggplant) compared to the samples immersed without ultrasound assistance. The apple samples (with a middle-high porosity and the largest cells) were the most affected by ultrasound application. The median cell areas of samples treated with ultrasound in water and apple juice were 26 and 20% larger than those of samples treated without ultrasound, mainly because of cell wall disruption which caused the cells to merge into bigger clusters, but no effect was observed with the citric acid. Ultrasound application significantly (p < 0.05) increased the median cell area of the less porous raw matter (beetroot) only when the treatment was carried out in the vegetable juice (cells were 26% larger after treatment assisted with ultrasound than without it). Thus, the effects of ultrasound differ in materials with initially different characteristics.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Marina Calahorro
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Valeria Eim
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carmen Rosselló
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Susana Simal
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
36
|
Wang H, Li Y, Wang L, Wang L, Li Z, Qiu J. Multi-scale structure, rheological and digestive properties of starch isolated from highland barley kernels subjected to different thermal treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Ultrasound-Assisted High-Voltage Cold Atmospheric Plasma Treatment on the Inactivation and Structure of Lysozyme: Effect of Treatment Voltage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02842-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
39
|
Dai T, He X, Xu J, Geng Q, Li C, Sun J, Liu C, Chen J, He X. Effects of Betanin on Pasting, Rheology and Retrogradation Properties of Different Starches. Foods 2022; 11:1600. [PMID: 35681351 PMCID: PMC9180664 DOI: 10.3390/foods11111600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a natural pigment with high antioxidative activity, betanin is underutilized owing to less attention. This study aimed to investigate the impact of betanin on pasting, rheology and retrogradation properties of rice, potato and pea starches. Betanin decreased the peak, trough and final viscosity of rice and potato starches, but increased those of pea starch. Rheology measurements implied that betanin had the greatest effect on the hysteresis loops and dynamic modulus of potato starch. Betanin endowed starch pastes with a vivid red appearance and maintained the color of the starch pastes during storage. XRD analysis indicated that betanin weakened the diffraction intensities and reduced the crystallinity of the retrograded starches. Meanwhile, betanin reduced the short-range ordered structure of the retrograde starches. The results of DSC analysis found that betanin significantly depressed the retrogradation enthalpy and retrogradation rate, implying that the long-term retrogradation of starches was delayed. Furthermore, the changed morphology of the retrograded starches was observed. These results suggested that betanin could be applied as an excellent colorant and inhibitor of retrogradation in foods such as bread and pastry products.
Collapse
Affiliation(s)
- Taotao Dai
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (T.D.); (J.S.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Xiaohong He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (T.D.); (J.S.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (J.X.); (Q.G.); (C.L.); (C.L.)
| | - Xuemei He
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (T.D.); (J.S.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| |
Collapse
|
40
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Wang L, Lan X, Xu W, Du Q, Deng S, Jia D. Effects of Glyceryl Monostearate on the Retrogradation of Pea Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Wang
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Xuyue Lan
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Wen Xu
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Qinling Du
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Sha Deng
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Dongying Jia
- College of Biomass Science & Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
42
|
Dewi AMP, Santoso U, Pranoto Y, Marseno DW. Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers (Basel) 2022; 14:1086. [PMID: 35335417 PMCID: PMC8955598 DOI: 10.3390/polym14061086] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
To elucidate the pretreatment of a heat moisture treatment that could increase the DS and hydrophobicity of OSA starch, the effect of the moisture level of the HMT process on the physicochemical properties was investigated. The higher moisture content (MC) in the HMT process led to a decreasing degree of crystallinity and gelatinization enthalpy and also produced surface damage and cracking of the granules. HMT pretreatment with the right moisture content resulted in OSA starch with the maximum DS value and reaction efficiency. Pre-treatment HMT at 25% MC (HMT-25) followed by OSA esterification exhibited the highest DS value (0.0086) and reaction efficiency (35.86%). H25-OSA starch has been shown to have good water resistance (OAC 1.03%, WVP 4.92 × 10-5 g/s m Pa, water contact angle 88.43°), and conversely, has a high cold water solubility (8.44%). Based on FTIR, there were two new peaks at 1729 and 1568 cm-1 of the HMT-OSA starch, which proved that the hydroxyl group of the HMT starch molecule had been substituted with the carbonyl and carboxyl ester groups of OSA.
Collapse
Affiliation(s)
- Angela Myrra Puspita Dewi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia; (A.M.P.D.); (U.S.); (Y.P.)
- Department of Agricultural Technology, Faculty of Agricultural Technology, Papua University, Manokwari 98314, Indonesia
| | - Umar Santoso
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia; (A.M.P.D.); (U.S.); (Y.P.)
| | - Yudi Pranoto
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia; (A.M.P.D.); (U.S.); (Y.P.)
| | - Djagal W. Marseno
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia; (A.M.P.D.); (U.S.); (Y.P.)
| |
Collapse
|
43
|
Jaymand M. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications. Int J Biol Macromol 2022; 197:111-120. [PMID: 34952096 DOI: 10.1016/j.ijbiomac.2021.12.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Starch is the second most abundant naturally-occurring polymer after cellulose that possess superior physicochemical and biological features with numerous practical applications ranging from industrial to biomedical. Despite, native starch suffer from some drawbacks, including difficult processability, low shear and thermal stability, weak mechanical properties, and tendency to easily retrograde and undergo syneresis. Therefore, modification of native starch is necessary for circumvent the above-mentioned problems and expanding application ranges. This natural polymer can be modified using chemical, physical, enzymatic, and genetic engineering strategies. Amongst, chemical approaches have received more attention owing to enhancing physicochemical and biological features that lead to higher performance than those of the other strategies. In this context, incorporation of sulfur functionality-containing groups (sulfonation and sulfation) can be considered as an efficient approach due to significant enhancement in physiochemical properties, including zeta potential (move to negative values), molecular weight, processiability (e.g., solubility and meltability), and rheology. Furthermore, this strategy can modified some biological features, such as hemocompatibility, protein sorption, biostability, adhesion and proliferation of numerous cells, antithrombogenicity, antiinflammatory, antiviral, antimicrobial, antioxidant, antifungal, anticoagulant and antifouling properties. Accordingly, this review highlight's the synthesis strategies, physiochemical and biological properties, as well as applications of sulfur functionality-modified starches in numerous practical fields.
Collapse
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
44
|
Shen H, Guo Y, Zhao J, Zhao J, Ge X, Zhang Q, Yan W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int J Biol Macromol 2021; 191:821-831. [PMID: 34597694 DOI: 10.1016/j.ijbiomac.2021.09.157] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Plasma is a simple, effective and promising food processing technology with great potential for starch modification. Mung bean starch was subjected to ultrasound (300 W, 10, 30 and 50 min), plasma (40 V, 1, 3 and 9 min) and the synergistic treatment, as well as investigating its effects on the morphology, chain length distribution, molecular weight, crystalline structure and physicochemical properties of starch. Ultrasound and plasma treatment did not change the granule shape, but caused some corrosions on the surface, and dual treatment increased the damage degree of starch granules surface. All treatments decreased the molecular weight (Mw), amylopectin long chains and crystallinity but increased the gelatinization temperatures and enthalpy. Different from ultrasound irradiation, single plasma treatment significantly reduced the swelling power and pasting viscosities. Furthermore, dual treatment increased the thermal stability of starch paste, owing to the reinforcement effect between ultrasound and plasma. Thus, dual modification displayed an excellent ability to modify starch with specific characteristics and expand the potential application of mung bean starch in the food industry.
Collapse
Affiliation(s)
- Huishan Shen
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jiangyan Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| |
Collapse
|
45
|
Rabadán A, Nieto R, Bernabéu R. Food Innovation as a Means of Developing Healthier and More Sustainable Foods. Foods 2021; 10:foods10092069. [PMID: 34574178 PMCID: PMC8469803 DOI: 10.3390/foods10092069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
The current demand for healthy and sustainable foods has encouraged the development of new alternatives even in traditional products. Improved foods may be produced by reducing the amount of some ingredients, adding new ones, or replacing traditionally used ingredients for others. By reformulating their products, manufacturers can offer healthier choices for an ever-growing number of consumers interested in maintaining a balanced diet. In addition, the market demand for more sustainable foods contributes to a lower environmental impact in their production. In this regard, current areas of interest include the production of foods using a lower number of inputs, as well as the utilization of food by-products, to improve the amount and quality of available foods. Another aspect to be considered is that not all consumers are willing to eat foods produced with new ingredients or novel technologies. Hence, the development of innovations in food products should take into account the influence of so-called “consumer food neophobia”.
Collapse
|